Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-2\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\4x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{5}{4}\end{cases}}\)
ĐKXĐ: x khác -4;-5;-6;-7
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{\left(x+4\right).\left(x+5\right)}+\frac{1}{\left(x+5\right).\left(x+6\right)}+\frac{1}{\left(x+6\right).\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{x+7-x-4}{\left(x+4\right).\left(x+7\right)}=\frac{1}{18}\Rightarrow3.18=x^2+11x+28\)
\(\Rightarrow x^2+11x-26=0\)
\(\Rightarrow\left(x-2\right).\left(x+13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-13\end{cases}\left(tm\right)}\)
Vậy...
a/ Đặt \(6x+7=a\Rightarrow\left\{{}\begin{matrix}6x+8=a+1\\6x+6=a-1\end{matrix}\right.\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)a^2-72=0\)
\(\Leftrightarrow\left(a^2-1\right)a^2-72=0\)
\(\Leftrightarrow a^4-a^2-72=0\)
\(\Leftrightarrow\left(a^2-9\right)\left(a^2+8\right)=0\)
\(\Leftrightarrow a^2=9\) (do \(a^2+8>0\))
\(\Rightarrow\left[{}\begin{matrix}a=3\\a=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}6x+7=3\\6x+7=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ne-4;-5;-6;-7\)
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x-26=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
a. \(x^2+9x+20=\left(x^2+4x\right)+\left(5x+20\right)\)
\(=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)
Tương tự: \(x^2+11x+30=\left(x+5\right)\left(x+6\right)\)
\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)
\(\Rightarrow PT=\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(=\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(=\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(=18\left(x+7\right)-18\left(x+4\right)=\left(x+7\right)\left(x+4\right)\)
\(=x^2+11x+28=54\)
\(=x^2+11x-26=0\)
\(=\left(x^2-2x\right)+\left(13x-26\right)=0\)
\(=x\left(x-2\right)+13\left(x-2\right)=0\)
\(=\left(x+13\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-13\\x=2\end{matrix}\right.\)
b. \(\left(3x-2\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-\frac{5}{4}\end{matrix}\right.\)
À tớ thiếu ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-4\\x\ne-5\\x\ne-6\\x\ne-7\end{matrix}\right.\)
Ta có vế trái của pt luôn \(\ge0\)
Do đó : \(11x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=x+\frac{1}{2}\\...\\\left|x+\frac{1}{110}\right|=x+\frac{1}{110}\end{cases}}\)
Khi đó pt trở thành :
\(x+\frac{1}{2}+x+\frac{1}{6}+...+x+\frac{1}{110}=11x\)
\(\Leftrightarrow10x+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}=11x\)
\(\Leftrightarrow x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(\Leftrightarrow x=1-\frac{1}{11}=\frac{10}{11}\) ( thỏa mãn )
Vậy : pt đã cho có nghiệm \(S=\left\{\frac{10}{11}\right\}\)
Dễ thấy \(VT>0\forall x\)
\(\Rightarrow11x>0\Rightarrow x>0\)
Phương trình trở thành \(10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=11x\)
\(\Rightarrow x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow x=1-\frac{1}{11}=\frac{10}{11}\)
Vậy \(x=\frac{10}{11}\)
\(a.\left(x^2+3x+2\right)\left(x^2+11x+30\right)-60=0\)
\(\Leftrightarrow\left(x^2+7x-4x+16-14\right)\left(x^2+7x+4x+16+14\right)-60=0\)
\(\Leftrightarrow\left(x^2+7x+16-4x-14\right)\left(x^2+7x+16+4x+14\right)=0\)
\(\Leftrightarrow\left(x^2+7x+16\right)^2-\left(4x+14\right)^2-60=0\)
Vì \(\left(x^2+7x+16\right)^2>0;\left(4x+14\right)^2>0\)
Nên \(\left(x^2+7x+16\right)^2-\left(4x+14\right)^2-60\ge-60\)
V...\(S=\varnothing\)
\(b.4^x-12.2^x+32=0\)
\(\Leftrightarrow\left(2^x\right)^2-2.2^x.6+36-4=0\)
\(\Leftrightarrow\left(2^x-6\right)^2-4=0\)
\(\Leftrightarrow\left(2^x-4\right)\left(2^x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2^x-4=0\\2^x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2^x=4\\2^x=8\end{cases}\Leftrightarrow}\orbr{\begin{cases}2^x=2^2\\2^x=2^3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)
V...\(S=\left\{2;3\right\}\)
^^ đúng ko ta
a) (x+1)(x+2)(x+5)(x+6)-60=0
[(x+1)(x+6)][(x+2)(x+5)]-60=0
(x^2 + 7x + 6)(x^2 + 7x + 10) - 60 = 0
đặt t = x^2 + 7x + 8
pt trở thành
(t-2)(t+2)-60=0
t^2 - 64=0 .....
t=8 hoặc t=-8.
tìm x ....
\(\left(x^2+11x+12\right)\left(x^2+9x+20\right)\left(x^2+13x+42\right)=36\left(x^2+11x+30\right)\left(x^2+11x+31\right)\)
\(\Leftrightarrow\left(x^2+11x+12\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)=36\left(x^2+11x+30\right)\left(x^2+11x+31\right)\)
\(\Leftrightarrow\left(x^2+11x+12\right)\left(x^2+11x+28\right)\left(x^2+11x+30\right)=36\left(x^2+11x+30\right)\left(x^2+11x+31\right)\)
Đặt \(x^2+11x+30=a\)
\(\Leftrightarrow\left(a-18\right)\left(a-2\right)a=36a\left(a+1\right)\)
\(\Leftrightarrow a^3-56a^2=0\)
\(\Leftrightarrow a^2\left(a-56\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=56\end{matrix}\right.\)
Với \(a=0\Leftrightarrow x^2+11x+30=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-6\end{matrix}\right.\)
Với \(a=56\Leftrightarrow x^2+11x+30=56\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=2\end{matrix}\right.\)
đề sai rồi bạn , phải là ( x2+11x + 12)(x2+9x+20 ) = 36(x2+11x+30)(x2+11x+31)