Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x^3+y^3=1+y-x+xy\left(1\right)\\7xy+y-x=7\left(2\right)\end{matrix}\right.\)
Từ(2)\(\Rightarrow x-y=7xy-7\)
\(\left(1\right)\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)=1+y-x+xy\)
\(\Leftrightarrow\left[\sqrt{\left(x-y\right)^2+4xy}\right]\left[\left(x-y\right)^2+xy\right]=1+7-7xy+xy\)
\(\Leftrightarrow7\left[\sqrt{\left(7xy-7\right)^2+4xy}\right]\left(7xy-7+xy\right)=-6xy+8\)
Đặt xy=a
\(\Rightarrow7\left[\sqrt{\left(7a-7\right)^2+4a}\right]\left(8a-7\right)=-6a+8\)
\(\Leftrightarrow49\left(\sqrt{\left(a-1\right)^2}\right)\left(8a-7\right)+6a-8=0\)
Với \(a-1\ge0\Leftrightarrow a\ge1\)
\(\Rightarrow49\left(8a^2-15a+7\right)+6a-8=0\)
\(\Leftrightarrow392a^2-729a+335=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{729+\sqrt{6161}}{784}\left(TM\right)\\a=\dfrac{729-\sqrt{6161}}{784}\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow xy=\dfrac{729+\sqrt{6161}}{784}\)\(\Rightarrow y=\dfrac{\dfrac{729+\sqrt{6161}}{784}}{x}\)
Thay vào (2)\(\Rightarrow\)\(x\approx1,125;y\approx0,915\)
Với \(a-1< 0\Leftrightarrow a< 1\)
\(\Rightarrow49\left(-a+1\right)\left(8a-7\right)=-6a+8\)
\(\Leftrightarrow-49\left(8a^2-15a+7\right)+6a-8=0\)
\(\Leftrightarrow-392a^2+741a-351=0\)(vô nghiệm).
Vậy hpt có nghiệm (x;y)=(1,125;0,915).
\(\left\{{}\begin{matrix}x^3+y^3=1-x+y+xy\left(1\right)\\7xy+y-x=7\left(2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^3+y^3=1-x+y+xy\\x-y=7xy-7\end{matrix}\right.\)
Từ pt (1) suy ra: \(x^3+y^3=1+xy-\left(x-y\right)\)
\(\Leftrightarrow x^3+y^3=1+xy-7xy+7\)
\(\Leftrightarrow x^3+y^3=-6xy+8\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)=-6xy+8\)
\(\Leftrightarrow\left(x+y\right)^3-8=-6xy+3xy\left(x+y\right)\)
\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2\left(x+y\right)+4\right]=3xy\left(x+y-2\right)\)
\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2\left(x+y\right)+4-3xy\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y-2=0\\\left(x+y\right)^2+2\left(x+y\right)+4-3xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=2\left(3\right)\\\left(x+y\right)^2+2\left(x+y\right)+4-3xy=0\left(4\right)\end{matrix}\right.\)
TH1: Từ (2) và (4) suy ra: \(\Leftrightarrow\left[{}\begin{matrix}x+y=2\\7xy+y-x=7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2-y\\7\left(2-y\right)y+y-2+y=7\end{matrix}\right.\)
Suy ra: 14y - 7y2 + y - 2 + y = 7
<=> 7y2 - 16y +9 = 0
\(\Leftrightarrow\left[{}\begin{matrix}y=1\rightarrow x=1\\y=\frac{9}{7}\rightarrow x=\frac{5}{9}\end{matrix}\right.\)
TH2:Thay vào tính cho kết quả ko thỏa mãn
Kết luận...
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
a)
\(\left\{{}\begin{matrix}x+y+xy=7\\x^2+y^2+xy=13\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+xy=7\\\left(x+y\right)^2-xy=13\end{matrix}\right.\)
Đặt x+y = S, xy = P,ta có hệ
\(\left\{{}\begin{matrix}S+P=17\\S^2-P=13\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}P=S-17\\S^2-S+4=0\end{matrix}\right.\)
\(S^2-S+4>0\)
=> Hệ phương trình vô nghiệm
ĐKXĐ: \(xy\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2-4y+2\right)=-y\\\frac{1}{x}\left(y+\frac{1}{y}\right)=3-\frac{1}{y^2}\end{matrix}\right.\)
Do các vế của 2 pt đều khác 0, nhân vế với vế:
\(\left(y+\frac{1}{y}\right)\left(y^2-4y+2\right)=-y\left(3-\frac{1}{y^2}\right)\)
\(\Leftrightarrow y^3-4y^2+6y-4+\frac{1}{y}=0\)
\(\Leftrightarrow y^4-4y^3+6y^2-4y+1=0\)
Chia 2 vế của pt cho \(y^2\) :
\(y^2+\frac{1}{y^2}-4\left(y+\frac{1}{y}\right)+6=0\)
Đặt \(y+\frac{1}{y}=t\Rightarrow y^2+\frac{1}{y^2}=t^2-2\)
\(\Rightarrow t^2-4t+4=0\Rightarrow t=2\Rightarrow y+\frac{1}{y}=2\Rightarrow y=1\)
b/ ĐKXĐ:
Đặt \(\left\{{}\begin{matrix}x^2+y^2-1=a\\\frac{y}{x}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+4b=21\\\frac{3}{a}+\frac{2}{b}=1\end{matrix}\right.\)
Một hệ pt hết sức bình thường, chắc bạn giải ngon lành :D
Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Trên con đường thành công không có dấu chân của kẻ lười biếng, Nguyễn Lê Phước Thịnh, Phạm Minh Quang, Phạm Lan Hương, Mysterious Person, Trần Thanh Phương, hellokoko,
@tth_new, @Nguyễn Việt Lâm, @Akai Haruma
Giúp em với ạ! Cần gấp lắm ạ! Thanks!