K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2019

\(\left\{{}\begin{matrix}x^3+y^3=1+y-x+xy\left(1\right)\\7xy+y-x=7\left(2\right)\end{matrix}\right.\)

Từ(2)\(\Rightarrow x-y=7xy-7\)

\(\left(1\right)\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)=1+y-x+xy\)

\(\Leftrightarrow\left[\sqrt{\left(x-y\right)^2+4xy}\right]\left[\left(x-y\right)^2+xy\right]=1+7-7xy+xy\)

\(\Leftrightarrow7\left[\sqrt{\left(7xy-7\right)^2+4xy}\right]\left(7xy-7+xy\right)=-6xy+8\)

Đặt xy=a

\(\Rightarrow7\left[\sqrt{\left(7a-7\right)^2+4a}\right]\left(8a-7\right)=-6a+8\)

\(\Leftrightarrow49\left(\sqrt{\left(a-1\right)^2}\right)\left(8a-7\right)+6a-8=0\)

Với \(a-1\ge0\Leftrightarrow a\ge1\)

\(\Rightarrow49\left(8a^2-15a+7\right)+6a-8=0\)

\(\Leftrightarrow392a^2-729a+335=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{729+\sqrt{6161}}{784}\left(TM\right)\\a=\dfrac{729-\sqrt{6161}}{784}\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow xy=\dfrac{729+\sqrt{6161}}{784}\)\(\Rightarrow y=\dfrac{\dfrac{729+\sqrt{6161}}{784}}{x}\)

Thay vào (2)\(\Rightarrow\)\(x\approx1,125;y\approx0,915\)

Với \(a-1< 0\Leftrightarrow a< 1\)

\(\Rightarrow49\left(-a+1\right)\left(8a-7\right)=-6a+8\)

\(\Leftrightarrow-49\left(8a^2-15a+7\right)+6a-8=0\)

\(\Leftrightarrow-392a^2+741a-351=0\)(vô nghiệm).

Vậy hpt có nghiệm (x;y)=(1,125;0,915).

12 tháng 5 2019

\(\left\{{}\begin{matrix}x^3+y^3=1-x+y+xy\left(1\right)\\7xy+y-x=7\left(2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^3+y^3=1-x+y+xy\\x-y=7xy-7\end{matrix}\right.\)

Từ pt (1) suy ra: \(x^3+y^3=1+xy-\left(x-y\right)\)

\(\Leftrightarrow x^3+y^3=1+xy-7xy+7\)

\(\Leftrightarrow x^3+y^3=-6xy+8\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)=-6xy+8\)

\(\Leftrightarrow\left(x+y\right)^3-8=-6xy+3xy\left(x+y\right)\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2\left(x+y\right)+4\right]=3xy\left(x+y-2\right)\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2\left(x+y\right)+4-3xy\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y-2=0\\\left(x+y\right)^2+2\left(x+y\right)+4-3xy=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=2\left(3\right)\\\left(x+y\right)^2+2\left(x+y\right)+4-3xy=0\left(4\right)\end{matrix}\right.\)

TH1: Từ (2) và (4) suy ra: \(\Leftrightarrow\left[{}\begin{matrix}x+y=2\\7xy+y-x=7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2-y\\7\left(2-y\right)y+y-2+y=7\end{matrix}\right.\)

Suy ra: 14y - 7y2 + y - 2 + y = 7

<=> 7y2 - 16y +9 = 0

\(\Leftrightarrow\left[{}\begin{matrix}y=1\rightarrow x=1\\y=\frac{9}{7}\rightarrow x=\frac{5}{9}\end{matrix}\right.\)

TH2:Thay vào tính cho kết quả ko thỏa mãn

Kết luận...

2 tháng 12 2018
https://i.imgur.com/yw2PEGF.gif

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

23 tháng 8 2018

Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)

Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)

=> hpy vô nghiệm

23 tháng 8 2018

c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)

Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt

\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)

với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)

đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !

23 tháng 2 2019

a)

\(\left\{{}\begin{matrix}x+y+xy=7\\x^2+y^2+xy=13\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+xy=7\\\left(x+y\right)^2-xy=13\end{matrix}\right.\)

Đặt x+y = S, xy = P,ta có hệ

\(\left\{{}\begin{matrix}S+P=17\\S^2-P=13\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P=S-17\\S^2-S+4=0\end{matrix}\right.\)

\(S^2-S+4>0\)

=> Hệ phương trình vô nghiệm

NV
13 tháng 2 2020

ĐKXĐ: \(xy\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2-4y+2\right)=-y\\\frac{1}{x}\left(y+\frac{1}{y}\right)=3-\frac{1}{y^2}\end{matrix}\right.\)

Do các vế của 2 pt đều khác 0, nhân vế với vế:

\(\left(y+\frac{1}{y}\right)\left(y^2-4y+2\right)=-y\left(3-\frac{1}{y^2}\right)\)

\(\Leftrightarrow y^3-4y^2+6y-4+\frac{1}{y}=0\)

\(\Leftrightarrow y^4-4y^3+6y^2-4y+1=0\)

Chia 2 vế của pt cho \(y^2\) :

\(y^2+\frac{1}{y^2}-4\left(y+\frac{1}{y}\right)+6=0\)

Đặt \(y+\frac{1}{y}=t\Rightarrow y^2+\frac{1}{y^2}=t^2-2\)

\(\Rightarrow t^2-4t+4=0\Rightarrow t=2\Rightarrow y+\frac{1}{y}=2\Rightarrow y=1\)

b/ ĐKXĐ:

Đặt \(\left\{{}\begin{matrix}x^2+y^2-1=a\\\frac{y}{x}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+4b=21\\\frac{3}{a}+\frac{2}{b}=1\end{matrix}\right.\)

Một hệ pt hết sức bình thường, chắc bạn giải ngon lành :D

13 tháng 2 2020

Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Trên con đường thành công không có dấu chân của kẻ lười biếng, Nguyễn Lê Phước Thịnh, Phạm Minh Quang, Phạm Lan Hương, Mysterious Person, Trần Thanh Phương, hellokoko,

@tth_new, @Nguyễn Việt Lâm, @Akai Haruma

Giúp em với ạ! Cần gấp lắm ạ! Thanks!