\(A=19^{5^{1890}}+2^{9^{1969}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Số số hạng tổng S là:

     (2016-3):3+1=672

Tổng S là:

     (3+2016).672:2=678384

3. 

231-(x-6)=1339:13

231-(x-6)=103

x-6=231-103

x-6=128

x=128+6

x=134

8 tháng 1 2019

a) Ta có:

 S=51+52+53+...+596 gồm 96 số hạng

   =(51+52+...+56)+(57+58+...+512)+...+(591+592+...+596)

   =(51+52+...+56)+56.(51+52+...+56)+...+585.(51+52+...+56)

   =19530+56.19530+...+585.19530

   =19530.(1+55+...+585)

 Vậy: S chia hết cho 126(Vì 19530 chia hết cho 126)

 b) Vì S chia hết cho 19530 nên S có tận cùng bằng 0(19530=1953.10)

24 tháng 10 2016

a)\(S=2^1+2^2+...+2^{100}\)

\(=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2^1\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=2^1\cdot15+...+2^{97}\cdot15\)

\(=15\cdot\left(2^1+...+2^{97}\right)⋮15\)

24 tháng 10 2016

c)\(S=2^1+2^2+...+2^{100}\)

\(2S=2\left(2^1+2^2+...+2^{100}\right)\)

\(2S=2^2+2^3+...+2^{101}\)

\(2S-S=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

\(S=2^{101}-2\)

26 tháng 12 2018

Dễ thấy mọi số mũ đều có dạng 4k+1

=> \(1+2^5+3^9+4^{13}+........+504^{2013}+505^{2017}=\left(....1\right)+\left(.....2\right)+..........+\left(...4\right)+\left(....5\right)\)

chia tổng A thành 50 nhóm và thừa 5 số hạng cuối

Chữ số tận cùng của 50 là:

50=10.5 có chứa thừa số 10

nên cstc của 50 nhóm là: 0

cstc của của 5 số hạng cuối là: 5

=> A có tc là: 5

26 tháng 12 2018

Cảm ơn shitbo nhiều !!!

31 tháng 5 2018

a) số hs nữ của lớp 6a là:

\(45\cdot\dfrac{5}{9}=25\left(hs\right)\)

b) số hs nam của lớp 6a là:

\(45-25=20\left(hs\right)\)

Số học của hai lớp 6a và 6b là:

\(20:\dfrac{4}{19}=95\left(hs\right)\)

Số học sinh của lớp 6b là:

\(95-45=50\left(hs\right)\)

31 tháng 5 2018

The postman is on his way. I can ............. him coming.

13 tháng 7 2019

Bạn tham khảo nhé: Câu hỏi của I lay my love on you 

27 tháng 10 2015

a)Ta thấy: 5 đồng dư với 1(mod 2)

=>52003 đồng dư với 12003(mod 2)

=>52003 đồng dư với 1(mod 2)

=>52003=2k+1

=>\(19^{5^{2003}}=19^{2k+1}\)

a)Ta thấy: 5 đồng dư với 1(mod 2)

=>52003 đồng dư với 12003(mod 2)

=>52003 đồng dư với 1(mod 2)

=>52003=2k+1

Mà 19 đồng dư với 9(mod 10)

=>19 đồng dư với -1(mod 10)

=>192 đồng dư với (-1)2(mod 10)

=>192 đồng dư với 1(mod 10)

=>(192)k đồng dư với 1k(mod 10)

=>192k đồng dư với 1(mod 10)

=>192k.19 đồng dư với 1.9(mod 10)

=>192k+1 đồng dư với 9(mod 10)

=>\(19^{5^{2003}}\) đồng dư với 9(mod 10)

=>\(19^{5^{2003}}\)có tận cùng là 9