K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

Lời giải:

Ta thấy \(x^3+y^3+z^3\leq 9\)

\(\Leftrightarrow (x+y+z)^3-3(x+y)(y+z)(z+x)\leq 9\)

\(\Leftrightarrow 27-3[(x+y+z)(xy+yz+xz)-xyz]\leq 9\)

\(\Leftrightarrow 3(xy+yz+xz)-xyz\geq 6(\star)\)

\(x,y,z\in [0;2]\Rightarrow (x-2)(y-2)(z-2)\leq 0\)

\(\Leftrightarrow xyz+4\leq 2(xy+yz+xz)\)

Mặt khác \(xyz\geq 0\rightarrow 2(xy+yz+xz)\geq 4\rightarrow xy+yz+xz\geq 2\)

Do đó \(3(xy+yz+xz)-xyz\geq 2+4+xyz-xyz=6\)

Từ đó BĐT \((\star)\) hay ta có đpcm

Dấu bằng xảy ra khi \((x,y,z)=(2,1,0)\) và các hoán vị.

15 tháng 12 2017

help me plz

thank you so much

NV
12 tháng 10 2019

\(P=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\)

Ta có đánh giá: \(\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\) \(\forall x\in\left(0;1\right)\)

Thật vậy, BĐT tương đương:

\(2x\ge3\sqrt{3}x^2-3\sqrt{3}x^4\)

\(\Leftrightarrow\left(\sqrt{3}x-1\right)^2\left(\sqrt{3}x+2\right)\ge0\) (luôn đúng)

Tương tự: \(\frac{y}{1-y^2}\ge\frac{3\sqrt{3}}{2}y^2\) ; \(\frac{z}{1-z^2}\ge\frac{3\sqrt{3}}{2}z^2\)

Cộng vế với vế: \(P\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

20 tháng 10 2019

Quy đồng căng thẳng tek:)))