K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2015

1.

Vì p là số nguyên tố lớn hơn3

=>p có 2 dạng là 3k+1 và 3k+2

*Xét p=3k+1=>8p+1=8.(3k+1)+1=8.3k+8+1=3.8k+9=3.(8k+3) là hợp số

=>Vô lí

*Xét p=3k+2=>8p+1=8.(3k+2)+1=8.3k+16+1=3.8k+17=3.(8k+5)+2 là số nguyên tố

Khi đó: 8p-1=8.(3k+2)-1=8.3k+16-1=3.8k+15=3.(8k+5) là hợp số

Vậy 8p-1 là hợp số

2.

Vì p là số nguyên tố lớn hơn 3

=>p là số lẻ

=>p+1 là số chẵn

=>p+1 chia hết cho 2(1)

Vì p là số nguyên tố lớn hơn 3

=>p có 2 dạng là 3k+1 và 3k+2

*Xét p=3k+1=>p+2=3k+1+2=3k+3=3.(k+1) là hợp số

=>Vô lí

*Xét p=3k+2=>p+2=3k+2+2=3k+4=3.(k+1)+1 là số nguyên tố

Khi đó: p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3

=>p+1 chia hết cho 3(2)

Từ (1) và (2) ta thấy:

p+1 chia hết cho 2 và 3

mà (2,3)=1

=>p+1 chia hết cho 2.3

=>p+1 chia hết cho 6

Vậy p+1 là bội của 6

NV
25 tháng 12 2022

Với \(p=3\Rightarrow8p+1=25\) không là số nguyên tố

Với \(p>3\Rightarrow p\) không chia hết cho 3 nên \(p=3k+1\) hoặc \(p=3k+2\)

- Với \(p=3k+1\Rightarrow8p+1=24k+9=3\left(8k+3\right)⋮3\) nên không là số nguyên tố

- Với \(p=3k+2\Rightarrow8p-1=24k+15=3\left(8k+5\right)⋮3\) nên không là số nguyên tố

Vậy \(8p-1\) và \(8p+1\) luôn có ít nhất 1 số là hợp số, hay 2 số đã cho không đồng thời là số nguyên tố

28 tháng 1 2016

ai tik mk, mk tik lại

11 tháng 12 2017

* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa 

* Xét: p # 3 
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3 
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3 

Vậy: 
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3 
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3 
=> 8p+1 là hợp số 
---------- 
Cách khác: 
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1) 
xét 3 số nguyên liên tiếp: p-1, p, p+1 
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên) 
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3 

                                k nha

13 tháng 12 2017

* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3

chúc bn hok  toyó @_@

8 tháng 12 2021

Giả sử có 8p-1;8p+1 là SNT

Nếu p = 3 => 8p+1=25 không phải SNT

=> p \(⋮̸3\)

=> 8p  \(⋮̸3\)

Xét 8p-1;8p;8p+1 là 3 số TN liên tiếp

=> Luôn tồn tại 1 số chia hết cho 3 (vô lý)

 

29 tháng 12 2021

 Bài này mình chịu

9 tháng 1 2017

Nếu P=2  => 8P-1=8.2-1=15  

                     8P+1=8.2+1=17 (thỏa mãn)

Nếu P=3  =>8P-1=8.3-1=23

                     8P+1=8.3+1=25  (thỏa mãn)

Nếu p>3 thì P=3K+1 hoặc 3K+2

+Với P=3K+1=(8.3K+1-1)=(24K+0)=24k chia hết cho 3(hợp số)

+Với P=3k+2=(8.3k+2+1)=(24k+3) chia hết cho 3 (hợp số)

Vậy 8P+1 và 8P-1 không đồng thời là số nguyên tố.

4 tháng 1 2017

xin lỗi bạn mình ko biết vì mình học lớp 5

26 tháng 12 2016

Mình không biết nha

Chúc các bạn học giỏi

Tết vui vẻ nha

8 tháng 1 2017

8p - 1 va 8p + 1 khong dong thoi la so nguyen to vi:

p la SNT nen p co the = 2 ; 3; 5 ; 7 ; 11;...

8.3 - 1 = 20

8.3 + 1 = 25 va 20, 25 la hop so