Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 2x = 3y => 2x/3 = y
2x=4z => 2x/4 = z => x/2 = z
thay vào 2x - y + z = 15
2x - 2x/3 + x/2 =15
x(2-2/3+1/2) = 15
11x/6 = 15
11x= 90
x=90/11
y=60/11
z=45/11
Từ \(2x=3y=4z\) \(\Rightarrow\hept{\begin{cases}2x=3y\\3y=4z\end{cases}}\)
Từ \(2x=3y\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{2}=\frac{x}{3}.\frac{1}{4}=\frac{y}{2}.\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{12}=\frac{y}{8}\)( 1 )
Từ \(3y=4z\)\(\Rightarrow\)\(\frac{y}{4}=\frac{z}{3}=\frac{y}{4}.\frac{1}{2}=\frac{z}{3}.\frac{1}{2}\)\(\Rightarrow\)\(\frac{y}{8}=\frac{z}{6}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\frac{x}{12}=\frac{y}{8}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{8}=\frac{z}{6}=\frac{2x}{24}=\frac{y}{8}=\frac{z}{6}=\frac{2x-y+z}{24-8+6}=\frac{15}{22}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{15}{22}\\\frac{y}{8}=\frac{15}{22}\\\frac{z}{6}=\frac{15}{22}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}22x=180\\22y=120\\22z=90\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{90}{11}\\y=\frac{60}{11}\\z=\frac{45}{11}\end{cases}}\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)
Trường hợp 1: 2x-3y+5z=-1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)
Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5
Trường hợp 2: 2x-3y+5z=1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)
Do đó: x=15/70=3/14; y=1/7; z=1/5
a) Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y+3z}{15-2.10+3.6}=\frac{65}{13}=5\)
\(\Rightarrow x=5.15=75\)
\(y=5.10=50\)
\(z=5.6=30\)
b) Ta có: \(\frac{x}{5}=\frac{y}{3};\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{35+21-12}=\frac{132}{44}=3\)
\(\Rightarrow x=3.35=105\)
\(y=3.21=63\)
\(z=3.12=36\)
c) Gọi \(\frac{x}{4}=\frac{y}{7}=k\)
\(\Rightarrow x=4k;y=7k\)
\(\Rightarrow x.y=4k.7k=28k^2=112\)
\(\Rightarrow k^2=112:28=4\)
\(\Rightarrow k=\pm2\)
\(\Rightarrow x=\pm2.4=\pm8\)
\(y=\pm2.7=\pm14\)
a) \(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)(1)
\(\frac{y}{z}=\frac{5}{7}\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)(2)
Từ (1)(2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
đến đây tự làm tiếp đc rồi
b) \(2x=3y=5z\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
rồi đến đây cx ez rồi
a) \(\frac{2x}{3y}=\frac{-1}{3}\) và 2x + 3y = 7
Ta có : \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{\left(-1\right)+3}=\frac{7}{2}\)
=> \(\hept{\begin{cases}2x=\frac{7}{2}\cdot\left(-1\right)=-\frac{7}{2}\\3y=\frac{7}{2}\cdot3=\frac{21}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=\left(-\frac{7}{2}\right):2=-\frac{7}{4}\\y=\frac{21}{2}:3=\frac{7}{2}\end{cases}}\)
b) 21x = 19y => \(\frac{21x}{399}=\frac{19y}{399}\)=> \(\frac{x}{19}=\frac{y}{21}\)
Áp dụng t/c dãy tỉ số = nhau ta có :
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
=> x = -38,y = -42
\(a,\frac{2x}{3y}=-\frac{1}{3}\)và \(2x+3y=7\)
Theo bài ra ta có
\(\frac{2x}{3y}=-\frac{1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\)
Áp dụng dãy tỉ số bằng nhau ta có
\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{-1+3}=\frac{7}{2}\)
\(\hept{\begin{cases}\frac{2x}{-1}=\frac{7}{2}\\\frac{3y}{3}=\frac{7}{2}\end{cases}\Rightarrow\hept{\begin{cases}2x=-\frac{7}{2}\\3y=\frac{21}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{7}{4}\\y=\frac{7}{2}\end{cases}}}\)
\(b,21x=19y\)và \(x-y=4\)
Theo bài ra ta có
\(21x=19y\Rightarrow\frac{x}{19}=\frac{y}{21}\)
Áp dụng dãy tỉ số bằng nhau ta có
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
\(\hept{\begin{cases}\frac{x}{19}=-2\\\frac{y}{21}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=-38\\y=-42\end{cases}}}\)