K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

\(\Leftrightarrow8x\left(8x-1\right)^2\left(8x-2\right)=72.\)(nhân cả 2 vế vs 8)

Đặt \(a=8x-1.\)ta có pt

\(\left(a-1\right)a^2\left(a+1\right)=72\)

\(\Leftrightarrow a^4-a^2-72=0\)

\(\Leftrightarrow\left(a^2-9\right)\left(a^2+8\right)=0.\)

\(\Rightarrow\left(a-3\right)\left(a+3\right)=0\)(do \(a^2+8\ne0.\))

\(\Rightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}8x-1=3\\8x-1=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0.5\\x=-0.25\end{cases}}\)

vậy, \(S=\left\{0.5;-0.25\right\}.\)

xong rồi đó bn

31 tháng 5 2017

ko có dấu cộng hay dấu trừ j ak

2 tháng 6 2017

\(\Leftrightarrow\frac{8x^2}{3\left(1-2x\right)\left(1+2x\right)}=\frac{2x}{3\left(2x-1\right)}-\frac{1+8x}{4\left(1+2x\right)}\left(1\right)\)

Điều kiện : \(x\ne\frac{1}{2};\frac{-1}{2}\)

\(\left(1\right)\Leftrightarrow\frac{8x^2.4}{12\left(1-2x\right)\left(1+2x\right)}=\frac{-2x\left(1+2x\right).4}{12\left(1-2x\right)\left(1+2x\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1+2x\right)\left(1-2x\right)}\)

=> 32x2 = -8x(1+2x) - 3(1+8x)(1-2x)

<=> 32x2 = -8x - 16x2 + (-3-24x)(1-2x)

<=> 32x2 = -16x2 -8x -3 + 6x - 24x + 48x2

<=> -26x = 3

<=> x= -3/26 (nhận)

Vậy tập nghiệm \(S=\left\{\frac{-3}{26}\right\}\)

5 tháng 4 2017

\(2x\left(8x-1\right)^2\left(4x-1\right)=9\)

\(\Leftrightarrow8x\left(8x-1\right)^2\left(8x-2\right)=72\)(nhân hai vế với 8)

Đặt \(8x-1=y\). Khi đó, pt được viết lại:

\(\left(y+1\right)y^2\left(y-1\right)=72\)

\(\Leftrightarrow y^2\left(y^2-1\right)=72\)

\(\Leftrightarrow y^4-y^2-72=0\)

\(\Leftrightarrow y^4+3y^3-3y^3-9y^2+8y^2+24y-24y-72=0\)

\(\Leftrightarrow y^3\left(y+3\right)-3y^2\left(y+3\right)+8y\left(y+3\right)-24\left(y+3\right)=0\)

\(\Leftrightarrow\left(y+3\right)\left(y^3-3y^2+8y-24\right)=0\)

\(\Leftrightarrow\left(y+3\right)\left(y^2\left(y-3\right)+8\left(y-3\right)\right)=0\)

\(\Leftrightarrow\left(y+3\right)\left(y-3\right)\left(y^2+8\right)=0\)

Mà \(y^2+8\ge8>0\)

\(\Rightarrow\orbr{\begin{cases}y+3=0\\y-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-3\\y=3\end{cases}}}\)

TH1: \(y=-3\)

\(\Rightarrow8x-1=-3\)

\(\Leftrightarrow8x=-2\)

\(\Leftrightarrow x=\frac{-1}{4}\)

TH2: \(y=3\)

\(\Rightarrow8x-1=3\)

\(\Leftrightarrow8x=4\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy tập nghiệm của pt là S={\(\frac{-1}{4};\frac{1}{2}\)}

13 tháng 2 2020

\(ĐKXĐ:x\ne-4;x\ne-5;x\ne-6;x\ne-7\)

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{3}{54}\)

\(\Rightarrow\left(x+4\right)\left(x+7\right)=54\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

Ta có \(\Delta=11^2+4.26=225,\sqrt{\Delta}=15\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-11+15}{2}=2\\x=\frac{-11-15}{2}=-13\end{cases}}\)

Vậy tập nghiệm S =  {2;-13}

5 tháng 5 2019

\(\frac{2x+1}{x^2-5x+4}+\frac{5}{x-1}=\frac{2}{x-4}\)ĐKXĐ : \(x\ne1;4\)

\(\Leftrightarrow\frac{2x+1}{\left(x-1\right)\left(x-4\right)}+\frac{5\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-4\right)}\)

\(\Leftrightarrow2x+1+5x-20=2x-2\)

\(\Leftrightarrow2x+5x-2x=-1+20-2\)

\(\Leftrightarrow5x=17\)

\(\Leftrightarrow x=\frac{17}{5}\)

KL : Nghiệm của PT là S={ 17/5 }

5 tháng 5 2019

\(\frac{7}{8x}-\frac{x-5}{4x^2-8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\) ĐKXĐ : \(x\ne0;2\)

\(\Leftrightarrow\frac{7}{8x}-\frac{x-5}{4x\left(x-2\right)}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8\left(x-2\right)}\)

\(\Leftrightarrow\frac{7\left(x-2\right)}{8x\left(x-2\right)}-\frac{2\left(x-5\right)}{8x\left(x-2\right)}=\frac{4\left(x-1\right)}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\)

\(\Leftrightarrow7x-14-2x+10=4x-4+x\)

\(\Leftrightarrow7x-2x-4x-x=14-10-4\)

\(\Leftrightarrow0x=0\)

=> PT vô số nghiệm