K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

a) 2(x-1)2 - 4(x+3)2 + 2x(x-5)

= 2(x-2x +1)- 4(x2 + 6x +9) + 2x2 -10x

= 2x2 - 4x + 2 -4x2 - 24x - 36 + 2x2 - 10x

= (2x2 + 2x2 - 4x2) - (4x + 24x+10x) +(2-36)

= -38x-34

b) 2(2x+5)2  -3(4x+1)(1-4x)

= 2(4x2 + 20x + 25) + 3(4x+1)(4x-1)

= 8x2 +40x + 50 + 3(16x2 -1)

= 8x2 + 40x + 50 + 48x2 - 3

=56x2 +40x + 47

21 tháng 8 2021

a, \(2\left(x-1\right)^2-4\left(x+3\right)^2+2x\left(x-5\right)\)

\(=2\left(x^2-2x+1\right)-4\left(x^2+6x+9\right)+2x\left(x-5\right)\)

\(=2x^2-4x+2-4x^2-24x-36+2x^2-10=-28x-44\)

b, \(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)

\(=2\left(4x^2+20x+25\right)-3\left(1-16x^2\right)\)

\(=8x^2+40x+50-3+48x^2=56x^2+40x+47\)

7 tháng 9 2016

x4-y4=j,tu nghi,de ma

21 tháng 9 2020

a) 2( x - 1 )2 - 4( 3 + x )2 + 2x( x - 5 )

= 2( x2 - 2x + 1 ) - 4( 9 + 6x + x2 ) + 2x2 - 10x

= 2x2 - 4x + 2 - 36 - 24x - 4x2 + 2x2 - 10x

= ( 2x2 - 4x2 + 2x2 ) + ( -4x - 24x - 10x ) + ( 2 - 36 )

= -38x - 34

b) 2( 2x + 5 )2 - 3( 4x + 1 )( 1 - 4x )

= 2( 4x2 + 20x + 25 ) + 3( 4x + 1 )( 4x - 1 )

= 8x2 + 40x + 50 + 3( 16x2 - 1 )

= 8x2 + 40x + 50 + 48x2 - 3

= 56x2 + 40x + 47

c) ( x - 1 )3 - x( x - 3 )2 + 1

= x3 - 3x2 + 3x - 1 - x( x2 - 6x + 9 ) + 1

= x3 - 3x2 + 3x - x3 + 6x2 - 9x

= 3x2 - 6x

d) ( x + 2 )3 - x2( x + 6 ) 

= x3 + 6x2 + 12x + 8 - x3 - 6x2

= 12x + 8

e) ( x - 2 )( x + 2 ) - ( x + 1 )3 - 2x( x - 1 )2

= x2 - 4 - ( x3 + 3x2 + 3x + 1 ) - 2x( x2 - 2x + 1 )

= x2 - 4 - x3 - 3x2 - 3x - 1 - 2x3 + 4x2 - 2x

= -3x3 + 2x2 - 5x - 5 

f) ( a + b - c )2 - ( b - c )2 - 2a( b - c )

= [ ( a + b ) - c ]2 - ( b2 - 2bc + c2 ) - 2ab + 2ac

= [ ( a + b )2 - 2( a + b )c + c2 ] - b2 + 2bc - c2 - 2ab + 2ac

= a2 + 2ab + b2 - 2ac - 2bc + c2 - b2 + 2bc - c2 - 2ab + 2ac

= a2

21 tháng 9 2020

a) \(2\left(x-1\right)^2-4\left(3+x\right)^2+2x\left(x-5\right)\)

Dùng hẳng đẳng thức thứ nhất + hai :

\(2\left(x^2-2\cdot x\cdot1+1^2\right)-4\left(3^2+2\cdot3\cdot x+x^2\right)+2x^2-10x\)

\(2\left(x^2-2x+1\right)-4\left(9+6x+x^2\right)+2x^2-10x\)

\(2x^2-4x+2-36-24x-4x^2+2x^2-10x\)

\(-38x-34\)

b) 2(2x + 5)2 - 3(4x + 1)(1 - 4x)

Dùng đẳng thức thứ 1 + 3

= 2[(2x)2 + 2.2x.5 + 52 ] - (-3)[(4x)2 - 12 ]

= 2(4x2 + 20x + 25) - (-3).(16x2 - 1)

= 8x2 + 40x + 50 - (3 - 48x2)

= 8x2 + 40x + 50 - 3 + 48x2

= 56x2 + 40x + 47

c) (x - 1)3 - x(x - 3)2 + 1

Dùng đẳng thức 2 + 5:

= x3 - 3.x2.1 + 3.x.12 - 13 - x(x2 - 2.x.3 + 32) + 1

= x3 - 3x2 + 3x - 1 - x3 + 6x2 - 9x + 1

= (x3 - x3) + (-3x2 + 6x2) + (3x - 9x) + (-1 + 1)

= 3x2 - 6x

d) (x + 2)3 - x2(x + 6)

= x3 + 3.x2.2 + 3.x.22 + 23 - x3 - 6x2

= x3 + 6x2 + 12x + 8 - x3 - 6x2

= (x3 - x3) + (6x2 - 6x2) + 12x + 8 = 12x + 8

e) Dùng đẳng thức thứ 3,4 và 2

= x2 - 4 - (x3 + 3.x2.1 + 3.x.12 + 13) - 2x(x2 - 2.x.1 + 12)

= x2 - 4 - (x3 + 3x2 + 3x + 1) - 2x3 + 4x2 - 2x

= x2 - 4 - x3 - 3x2 - 3x - 1 - 2x3 + 4x2 - 2x

= (x2 - 3x2 + 4x2) + (-4 - 1) + (-x3 - 2x3) + (-3x - 2x)

= 2x2 - 5 - 3x3 - 5x

f) Đặt \(a+b-c=A\)

\(b-c=B\)

\(A^2-B^2-2AB\)

\(A^2-2AB+\left(-B\right)^2\)

\(=A^2-2AB+B^2\)

= (A - B)2

= (a + b - c - (b - c))2

= (a + b - c - b + c)2

= a2

19 tháng 7 2021

Trả lời:

Bài 4:

b, B =  ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 ) 

= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1 

= x8 - 1

Thay x = 2 vào biểu thức B, ta có:

28 - 1 = 255

c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 ) 

= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1

= x7 + 1

Thay x = 2 vào biểu thức C, ta có:

27 + 1 = 129

d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 ) 

= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x

= x

Thay x = - 5 vào biểu thức D, ta có:

D = - 5

Bài 5: 

a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )

= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4

= x4 - y4

Thay x = 2; y = - 1/2 vào biểu thức A, ta có:

A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16

b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 ) 

= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5 

= a5 + a4b - ab4 - b5

Thay a = 3; b = - 2 vào biểu thức B, ta có:

B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65

c, ( x2 - 2xy + 2y2 ) ( x+ y) + 2x3y - 3x2y+ 2xy3 

= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y+ 2xy3

= x4 + 2y4

Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:

( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16

15 tháng 8 2018

a) \(36x^2-49=0\)

\(\Leftrightarrow\left(6x\right)^2-7^2=0\)

\(\Leftrightarrow\left(6x-7\right)\left(6x+7\right)=0\)

\(TH_1:6x-7=0\) \(TH_2:6x+7=0\)

\(\Leftrightarrow6x=7\) \(\Leftrightarrow6x=-7\)

\(\Leftrightarrow x=\dfrac{7}{6}\) \(\Leftrightarrow x=-\dfrac{7}{6}\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{7}{6};-\dfrac{7}{6}\right\}\)

16 tháng 8 2018

Bài 2

a) 36x2-49=0

⇔ (6x)2-49=0

⇔(6x-7).(6x+7)=0

TH1: 6x-7=0 TH2: 6x+7=0

⇔6x=7 ⇔6x=-7

⇔x=7/6 ⇔x=-7/6

26 tháng 6 2018

1/

d/ \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)-33\)

<=> \(24x^2+7x-6-\left(4x^2+23x+28\right)-\left(10x^2+3x-1\right)=-33\)

<=> \(24x^2+7x-6-4x^2-23x-28-10x^2-3x+1=-33\)

<=> \(10x^2-19x-33=-33\)

<=> \(10x^2-19x=0\)

<=> \(x\left(10x-19\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\10x-19=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{10}\end{cases}}\)