\(=\dfrac{n-5}{n^2+2}\)

a)Tìm \(n\) để P là phân số

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: n^2+2<>0 với mọi n

=>Với mọi n thì P là phân số

b: Khi n=0 thì P=(0-5)/(0+2)=-5/2

Khi n=-2 thì P=(-2-5)/(4+2)=-7/6

Khi n=3 thì P=(3-5)/(3^2+2)=-2/11

19 tháng 8 2020

a. Vì A thuộc Z 

\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )

b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)

Vì B thuộc Z nên 5 / x - 3 thuộc Z

\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )

c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)

\(=x-2-\frac{2}{x+1}\)

Vi C thuộc Z nên 2 / x + 1 thuộc Z

\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )

18 tháng 3 2018

a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.

TH1: n+1=1 => n=0 => n+3=3 (t/m)

TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)

=> n=0.

b, A không tối giản => ƯCLN(n+3;n-5) >1

=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.

18 tháng 3 2018

Ko có số tự nhiên n thõa mãn điều kiện. k mik nhé nếu muốn hỏi j thêm về câu này thì cứ nhắn tin riêng cho mik

29 tháng 4 2017

BÀi 1

Để A \(\in\) Z

=>\(\left(n+2\right)⋮\left(n-5\right)\)

=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)

=>\(7⋮\left(n-5\right)\)

=>\(n-5\in\left\{1;7;-1;-7\right\}\)

=>\(n\in\left\{6;13;4;-2\right\}\)

Vậy \(n\in\left\{6;13;4;-2\right\}\)

29 tháng 4 2017

Giúp mk nha

Arigatou gozaimasu!

Bài 1: a, Chứng tỏ rằng với n thuộc N, n khác 0 thì: \(\dfrac{1}{n\left(n+1\right)}\)=\(\dfrac{1}{n}\) - \(\dfrac{1}{n+1}\) b, Áp dụng kết quả ở câu a để tính nhanh: A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.....+\(\dfrac{1}{9.10}\) Bài 2: Tính nhanh: C=\(\dfrac{1}{2}\)+\(\dfrac{1}{14}\)+\(\dfrac{1}{35}\)+\(\dfrac{1}{65}\)+\(\dfrac{1}{104}\)+\(\dfrac{1}{152}\) Bài 3: a, Cho 2 phân số...
Đọc tiếp

Bài 1:

a, Chứng tỏ rằng với n thuộc N, n khác 0 thì:

\(\dfrac{1}{n\left(n+1\right)}\)=\(\dfrac{1}{n}\) - \(\dfrac{1}{n+1}\)

b, Áp dụng kết quả ở câu a để tính nhanh:

A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.....+\(\dfrac{1}{9.10}\)

Bài 2: Tính nhanh:

C=\(\dfrac{1}{2}\)+\(\dfrac{1}{14}\)+\(\dfrac{1}{35}\)+\(\dfrac{1}{65}\)+\(\dfrac{1}{104}\)+\(\dfrac{1}{152}\)

Bài 3:

a, Cho 2 phân số \(\dfrac{1}{n}\)\(\dfrac{1}{n+1}\) (n thuộc Z, n > 0). Chứng tỏ rằng tích của 2 phân số này bằng hiệu của chúng.

b, Áp dụng kết quả trên để tính giá trị các biểu thức sau:

A=\(\dfrac{1}{2}\) . \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) . \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) . \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) . \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) . \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) . \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) . \(\dfrac{1}{9}\)

B=\(\dfrac{1}{30}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{56}\)+\(\dfrac{1}{72}\)+\(\dfrac{1}{90}\)+\(\dfrac{1}{110}\)+\(\dfrac{1}{132}\)

Các bạn giúp mk với nha!vui

4
18 tháng 3 2017

Bài 1:

a) \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)

Quy đồng \(VP\) ta được:

\(VP=\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(\Rightarrow VP=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)

\(\Rightarrow VP=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)

\(\Rightarrow VP=VT\)

Vậy \(\forall n\in Z,n>0\Rightarrow\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (Đpcm)

b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{9}{10}\)

18 tháng 3 2017

Bài 3:

a) \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)

b) A=\(\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}+\dfrac{1}{5}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{8}+\dfrac{1}{8}.\dfrac{1}{9}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\)

\(=\dfrac{1}{2}-\dfrac{1}{9}\)

\(=\dfrac{7}{18}\)

B=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)

\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)

\(=\dfrac{1}{5}-\dfrac{1}{12}\)

\(=\dfrac{7}{60}\)

30 tháng 4 2018

1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow M>N\)

b.ta thấy:

\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)

=> A>B

30 tháng 4 2018

Trịnh Thùy Linh ơi mk cảm ơn bạn nhìu nha =)), iu bạn nhìu

6 tháng 6 2017

Bài 1 :

Gọi d là ước chung của 2n + 1 và 3n + 2 ( \(d\in Z;d\ne0\) )

\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)

\(2n+1⋮d\Rightarrow3\left(2n+1\right)⋮d\Rightarrow6n+3⋮d\)

\(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\Rightarrow6n+4⋮d\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow6n+4-6n-3⋮d\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{-1;1\right\}\)

Vậy \(\dfrac{2n+1}{3n+2}\) là phân số tối giản

Bài 2 : thiếu đề ?

Bài 3 :

Để A nguyên \(\Rightarrow2⋮n-1\Rightarrow n-1\) thuộc ước của 2

\(\Rightarrow n-1\in\left\{1;-1;-2;2\right\}\Rightarrow n\in\left\{2;0;-1;3\right\}\)

Vậy \(n\in\left\{2;0;-1;3\right\}\) thì A nguyên

6 tháng 6 2017

1)

Gọi d là UCLN (2n+1;3n+2)

\(\Rightarrow\)2n+1\(⋮\)d

3n+2\(⋮\)d

\(\Rightarrow\)3(2n+1)\(⋮\)d=)6n+3\(⋮\)d

\(\Rightarrow\)2(3n+2)\(⋮\)=)6n+4\(⋮\)d

Vì 6n+3 và 6n+4 \(⋮\)d nên

(6n+4)-(6n+3) chia hết cho d

1\(⋮\)d

=)\(\dfrac{2n+1}{3n+2}\)tối giản với mọi n