K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2018

Xét phương trình hoành độ giao điểm: x^2 = mx + 1 <=> x^2 - mx -1 = 0

\(\Delta\)= m^2 - 4 (-1) = m^2 + 4 > 0 \(\forall\)m

=> (d) luôn cắt (P) tại hai điểm phân biệt (đpcm)

Do đó:  x1 = \(\frac{1}{2}\left(m+\sqrt{m^2+4}\right)\)

=> y1 = \(\frac{1}{4}\left(m^2+m^2+4+2m\sqrt{m^2+4}\right)=\frac{1}{2}\left(m^2+2+m\sqrt{m^2+4}\right)\)

Tương tự x2 = \(\frac{1}{2}\left(m-\sqrt{m^2+4}\right)\)=> y2 = \(\frac{1}{2}\left(m^2+2-m\sqrt{m^2+4}\right)\)

Thay y1, y2 vừa tìm đc vào biểu thức y1 + y2 + y1*y2 = 7 ta đc: \(m^2+4=7\)=> m = \(\pm\sqrt{3}\)

Tính lại hộ mình xem tìm m đã đúng chưa nhé :)) sợ lẫn lộn r tính sai :))

26 tháng 5 2018

Xét phương trình : \(x^2 = mx + 1\) <=> \(x^2 - mx - 1 = 0\)

\(\Delta=\left(-m\right)^2-4\left(-1\right)=m^2+4>0\)\(\forall\)m

\(m^2\ge0\forall m\)=> (d) luôn cắt (P) tại hai điểm phân biệt

Theo Viet:\(\hept{\begin{cases}x_1+x_2=m\\x_1\times x_2=-1\end{cases}}\)

Giả sử 2 điểm phân biệt lần lượt là A(x1;y1) ; B(x2;y2)

Ta có: y1=x12 ; y2=x22

Theo bài : y1 + y2 + y1y2 = 7

<=> x12 + x22 + (x1x2)2 = 7

<=> (x1 +x2 )2 - 2x1x2 + (x1x2)2 = 7

<=> m2 + 2 + 1 = 7

<=> m2 = 7 - 3

<=> m2 = 4

=> m = \(\pm2\) 

10 tháng 11 2018

a) Phương trình hoàng độ giao điểm của (d) và (P) là:

x2=3x+m2 <=> x2-3x-m2=0 (1)

\(\Delta=3^2-4.\left(-m^2\right)=9+4m^2>0\)với mọi m thuộc R

=> phương trình (1) có hai nghiệm phân biệt

=> (d) luôn cắt (p) tại hai điểm phân biệt.

b) Gọi x1,, x2 là hoành độ giao điểm ứng với y1, y2

Ta có : y1=3x1+m2=x12

y2=3x2+m2=x22

=> 3x1+m2+3x2+m2=11.x12.x22=> 3(x1+x2)+2m2=11(x1.x2)2

Áp dụng định lí viet

x1+x2=3

x1.x2=-m2

Thay vào giải. Em làm tiếp nhé!

10 tháng 11 2018

May quá cô còn onl ,em cảm ơn ạ!

26 tháng 4 2020

a) PT hoành dộ giao điểm d và (P):

x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)

d tiếp xúc với (P) <=> m=-2 tìm được x=-1

Tọa độ điểm A(-1;1)

b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1

Điều kiện để 2 giao điểm khác phía trục tung là:m >-1

Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)

Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)

9 tháng 6 2019

a) Phương trình hoành độ giao điểm của (d) và (P) là

           \(x^2=\left(m-1\right)x+4\Leftrightarrow x^2-\left(m-1\right)x-4=0\)

Ta có \(\Delta=\left(m-1\right)^2-4.\left(-4\right)=\left(m-1\right)^2+16\)

Vì \(\left(m-1\right)^2\ge0\forall m\Rightarrow\left(m-1\right)^2+16>0\forall m\)hay \(\Delta>0\)

Suy ra phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi giá trị của m

Do đó đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m

(hoặc lập luận cho ac=1.(-4)<0 nên có 2 nghiệm phân biệt ...)

b) Theo chứng minh ý a thì phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt , áp dụng hệ thức Vi-ét:

\(\hept{\begin{cases}x_1+x_2=m-1\\x_1x_2=-4\end{cases}}\)

Khi đó : \(y_1+y_2=y_1.y_2\Leftrightarrow x_1^2+x_2^2=x_1^2.x_2^2\)( có cái này là do parabol P y=x^2)

     \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2\right)^2\Leftrightarrow\left(m-1\right)^2-2.\left(-4\right)=\left(-4\right)^2\)

\(\Leftrightarrow\left(m-1\right)^2=8\Leftrightarrow\orbr{\begin{cases}m-1=2\sqrt{2}\\m-1=-2\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}+1\\m=1-2\sqrt{2}\end{cases}}\)

Vậy...........................

9 tháng 6 2019

a/

hoành độ giao điểm của (d) và ( p ) là nghiệm của phương trình

\(x^2-\left(m-1\right)x-4=0\)

den ta = \(\left(m-1\right)^2+16>0\forall m\)

=> phương trình luôn có 2 nghiệm phân biệt với mọi m

b/

vì \(y_1,y_2\) là tung độ giao điểm của (d ) và ( p ) 

=> \(y_1=x_1^2\)

    \(y_2=x_2^2\)

theo vi - ét có \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-4\end{cases}}\)

ta có \(y_1+y_2=y_1.y_2\)

<=> \(x_1^2+x_2^2=x_1^2x_2^2\)

<=> \(\left(x_2+x_{ }_1\right)^2-2x_1x_2-x_1^2.x_2^2=0\)

<=> \(\left(m-1\right)^2-2.\left(-4\right)-\left(-4\right)^2=0\)

<=> \(m^2-2m+1+8-16=0\)

<=> \(m^2-2m-7=0\)

<=>\(\left(m-1\right)^2-8=0\)

<=> \(\left(m-1\right)^2=8\)

<=> \(m-1=2\sqrt{2}\left(h\right)m-1=-2\sqrt{2}\)

<=> \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)

vậy \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)

CHÚC BẠN HỌC TỐT