Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt T là số nguyên thì 12n2 + 1 là số chính phương lẻ.
Đặt \(12n^2+1=\left(2k-1\right)^2,\left(k\in N\right)\)
\(\Leftrightarrow12n^2+1=4k^2-4k+1\)
\(\Leftrightarrow12n^2=4k^2-4k\)
\(\Leftrightarrow3n^2=k\left(k-1\right)\)
\(\Leftrightarrow k\left(k-1\right)⋮3\Rightarrow k⋮3;k-1⋮3\)
+) Nếu \(k⋮3\Rightarrow n^2=\left(\dfrac{k}{3}\right).\left(k-1\right)\). Mà \(\left(\dfrac{k}{3};k-1\right)=1\)nên đặt \(\dfrac{k}{3}=x^2\Rightarrow k=3x^2\)
Đặt \(k-1=y^2\Rightarrow k=y^2+1\)
\(\Rightarrow3x^2=y^2+1\equiv2\left(mod3\right)\)
Vô lý vì 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1.
+) Nếu \(k-1⋮3\)
\(\Rightarrow n^2=\dfrac{k.\left(k-1\right)}{3}\)mà \(\left(k;\dfrac{\left(k-1\right)}{3}\right)=1\)nên đặt k = z2 và \(\dfrac{\left(k-1\right)}{3}=t^2\)
\(\Rightarrow T=...=2+2\left(2k-1\right)=4k=4z^2=\left(2z^2\right)\)là 1 số chính phương
=> ĐPCM
Lời giải:
Để \(2+2\sqrt{12n^2+1}\in\mathbb{Z}\) thì \(12n^2+1\). phải là số chính phương lẻ.
Đặt \(12n^2+1=(2a+1)^2(a\in\mathbb{Z})\)
\(\Leftrightarrow 12n^2=4a^2+4a\Leftrightarrow 3n^2=a(a+1)\)
Vì \(a(a+1)=3n^2\vdots 3\) nên xét các TH sau:
TH1: \(a\vdots 3\). Đặt \(a=3k\)
Ta có: \(3n^2=a(a+1)=3k(3k+1)\)
\(\Leftrightarrow n^2=k(3k+1)\)
Dễ thấy $(k,3k+1)=1$ nên để tích của chúng là scp thì bản thân mỗi số đó là scp \(\Rightarrow \left\{\begin{matrix} k=u^2\\ 3k+1=v^2\end{matrix}\right.\) \((u,v\in\mathbb{Z})\)
\(\Rightarrow 2+2\sqrt{12n^2+1}=2+2(2a+1)=4a+4=4.3k+4\)
\(=4(v^2-1)+4=(2v)^2\) là số chính phương (đpcm)
TH2: \(a+1\vdots 3\). Đặt \(a+1=3k\)
\(\Rightarrow n^2=(3k-1)k\). Dễ thấy $(3k-1,k)=1$ nên \(\left\{\begin{matrix} k=u^2\\ 3k-1=v^2\end{matrix}\right.(u,v\in\mathbb{Z})\)
\(\Rightarrow 3u^2-1=v^2\)
\(\Rightarrow v^2\equiv 2\pmod 3\) (vô lý- loại)
Vậy..........
\(n=\frac{\left(127+24\sqrt{28}\right)^k-\left(127-24\sqrt{28}\right)^k}{2\sqrt{28}}\)
k thuộc N*
Do \(n\in N^{\text{*}}\) \(\left(o\right)\) nên ta dễ dàng suy ra \(2+2\sqrt{28n^2+1}\in Z^+\)
Do đó, \(2\sqrt{28n^2+1}\in Z^+\) dẫn đến \(\sqrt{28n^2+1}\in Q\)
Lại có: \(28n^2+1\) luôn là một số nguyên dương (do \(\left(o\right)\)) nên \(\sqrt{28n^2+1}\in Z^+\)
hay nói cách khác, ta đặt \(\sqrt{28n^2+1}=m\) (với \(m\in Z^+\) )
\(\Rightarrow\) \(28n^2+1=m^2\) \(\left(\alpha\right)\)
\(\Rightarrow\) \(m^2-1=28n^2\) chia hết cho \(4\)
Suy ra \(m^2\text{ ≡ }1\) \(\left(\text{mod 4}\right)\)
Hay \(m\) phải là một số lẻ có dạng \(m=2k+1\) \(\left(k\in Z^+\right)\)
Từ \(\left(\alpha\right)\) suy ra \(28n^2=\left(2k+1\right)^2-1=4k\left(k+1\right)\)
nên \(7n^2=k\left(k+1\right)\)
Theo đó, ta có: \(\orbr{\begin{cases}k\\k+1\end{cases}\text{chia hết cho 7}}\)
Xét hai trường hợp sau:
\(\text{Trường hợp 1}:\)\(k=7q\) \(\left(q\in Z^+\right)\)
Suy ra \(7n^2=7q\left(7q+1\right)\)
\(\Rightarrow\) \(n^2=q\left(7q+1\right)\) \(\left(\beta\right)\)
Mặt khác, vì \(\left(q,7q+1\right)=1\) nên từ \(\left(\beta\right)\) suy ra \(\hept{\begin{cases}q=a^2\\7q+1=b^2\end{cases}\Rightarrow}\) \(7a^2+1=b^2\) \(\left(\gamma\right)\)
Tóm tại tất cả điều trên, ta có:
\(A=2+2\sqrt{28n^2+1}=2+2m=2+2\left(2k+1\right)=4+4.7q=4+28q\)
Khi đó, \(A=4+28a^2=4\left(7a^2+1\right)=4b^2\) (do \(\left(\gamma\right)\) )
Vậy, \(A\) là số chính phương với tất cả các điều kiện nêu trên
\(\text{Trường hợp 2:}\)\(k+1=7q\)
Tương tự