K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2015

 

a_)3n+2 - 2n+2 +3n - 2n 

 =(3n+2+3n)+(-2n+2-2n)

=(3n.32+3n.1)+(-2n.22-2n+1)

=3n.(9+1)-2n.(4+1)

=3n.10-2n.5

ta có 3n.10 chia hết cho 10 và 2n.5 chia hết cho 10( vì có thừa số 2 và 5)

=> 3n+2 - 2n+2 +3n - 2n chia hết cho 10.

 

 

 

13 tháng 2 2016

á thế còn câu b thì sao pn mik cug cần

 

22 tháng 6 2015

  \(3^{n+2}+3^n-2^{n+2}-2^n\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

=\(3^n.10-2^n.5=3^n.10-2^{n-1}.2.5=10\left(3^n-2^{n-1}\right)\)

Luôn luôn chia hết cho 10 => ĐPCM

 

25 tháng 10 2016

ta có:3n+2 - 2n+2 + 3n - 2^n=\(3^n\times3^2-2^n\times2^2+3^n-2^n=3^n\left(9+1\right)-2^n\left(4+1\right)=3^n\times10-2^n\times5\)\(=3^n\times10+2^{n-1}\times2\times5=3^n\times10+2^{n-1}\times10=>dpcm\)

5 tháng 4 2019

a, Gọi d là ƯCLN\((12n+1,30n+2)\)\((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}5(12n+1)⋮d\\2(30n+2)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Rightarrow(60n+5)-(60n+4)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy d = 1 để \(\frac{12n+1}{30n+2}\)là phân số  tối giản với mọi số tự nhiên n

Câu b tự làm

\(b)\)\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot10\)

\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(ĐPCM\right)\)

5 tháng 11 2015

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^n+27+3^n+3+2^n+8+2^n+4=\left(3^n+3^n+2^n+2^n\right)+42\)

chia hết cho 6

=>dpcm

25 tháng 1 2016

đoạn cuối phải là -2n ms làm được
 

25 tháng 1 2016

Ta có : 3^n+2 + 2^n+2 + 3^n + 2^n = 3^n.9 + 2^n.4 + 3^n + 2^n = 3^n. ( 9+1) + 2^n.(4+1) = 3^n.10 + 2^n.5

Vì 3^n.10 chia hết cho 10 và 2^n+5 chia hết cho 10 (2.5) => 3^n.10 + 2^n.5 chia hết cho 10

Vậy 3^n+2 + 2^n+2 + 3^n + 2^n chia hết cho 10

19 tháng 11 2018

1/a/ \(A=2+2^2+2^3+....+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^9+2^{10}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^9\left(1+2\right)\)

\(=2.3+2^3.3+....+2^9.3\)

\(=3\left(2+2^3+.....+2^9\right)⋮3\)

\(\Leftrightarrow A⋮3\left(đpcm\right)\)

b/ \(A=2+2^2+2^3+....+2^{10}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+2^6.31\)

\(=31\left(2+2^6\right)⋮31\)

\(\Leftrightarrow A⋮31\left(đpcm\right)\)

2/ Với mọi n là số tự nhiên thì \(n\) có hai dạng :

\(\left[{}\begin{matrix}n=2k\\n=2k+1\end{matrix}\right.\)

+) \(n=2k\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+4\right)\left(2k+7\right)\)

\(2k+4⋮2\)

\(\Leftrightarrow\left(2k+4\right)\left(2k+7\right)⋮2\)

\(\Leftrightarrow B\) là số chẵn

+) \(n=2k+1\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+1+4\right)\left(2k+1+7\right)=\left(2k+5\right)\left(2k+8\right)\)

\(2k+8⋮2\)

\(\Leftrightarrow\left(2k+5\right)\left(2k+8\right)⋮2\)

\(\Leftrightarrow B\) là số chẵn

Vậy...

NV
19 tháng 11 2018

1/

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(A=2.3+2^3.3+2^5.5+...+2^9.3=3.\left(2+2^3+...+2^9\right)\)

Do \(3⋮3\Rightarrow A⋮3\)

\(A=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)\)

\(A=2.31+2^6.31=31\left(2+2^6\right)\)

Do \(31⋮31\Rightarrow A⋮31\)

2/ \(B=\left(n+4\right)\left(n+7\right)\)

Nếu n chẵn, đặt \(n=2k\Rightarrow B=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)\)

Do 2 chẵn nên B chẵn

Nếu n lẻ, đặt \(n=2k+1\Rightarrow B=\left(2k+5\right)\left(2k+8\right)=2\left(2k+5\right)\left(k+4\right)\)

2 chẵn nên B chẵn

Vậy B luôn chẵn với mọi n

3/ Đề là B(112) hay B(121) bạn?