K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2018

Ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}\)

\(=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(\frac{\sqrt{n}}{\sqrt{n+1}}+1\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Từ đây ta có

\(VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2017}}-\frac{1}{\sqrt{2018}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2018}}\right)< 2\)

8 tháng 3 2018

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}\)

\(\Leftrightarrow\sqrt{n}\left(\frac{1}{n}-\frac{1}{n1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\). Mà:

\(\left(\frac{\sqrt{n}}{\sqrt{n+1}}+1\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\) 

 Từ đó, ta có:

\(VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{2017}}-\frac{1}{\sqrt{2018}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2018}}\right)< 2\)  (ĐPCM)

22 tháng 3 2019

Đặt \(x=a+b=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

\(\Leftrightarrow x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Leftrightarrow x^3=2+\sqrt{5}+2-\sqrt{5}+\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}.x\)

\(\Leftrightarrow x^3=4+\sqrt[3]{4-5}.x\)

\(\Leftrightarrow x^3=4-3x\)

\(\Leftrightarrow x^3+3x-4=0\)

\(\Leftrightarrow x^3-x^2+x^2-x+4x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+4\right)=0\)

Vì \(x^2+x+4=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{15}{4}=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\left(\forall x\right)\)

Nên \(x-1=0\Leftrightarrow x=1\)

Vậy \(x=a+b=1\Rightarrow\) \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\) (đpcm)

23 tháng 3 2019

Dòng thứ 3 và thứ 4 bạn thiếu  số 3 nhé @ Ngân@

\(3\sqrt[3]{\left(2+\sqrt{5}\right).\left(2-\sqrt{5}\right)}.x\)

26 tháng 8 2020

Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)

\(\Rightarrow\hept{\begin{cases}a+b=x\\ab=1\end{cases}}\)

Ta có: \(x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Rightarrow x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3.1.x\)

\(\Leftrightarrow x^3=18+3x\)

\(\Leftrightarrow x^3-3x-18=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+6\right)=0\)

Vì \(x^2+3x+6=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}>0\)

\(\Rightarrow x-3=0\Leftrightarrow x=3\)

Thay x=3 vào \(x^5-3x-18=0\), thấy không thoả mãn.

KL: Đề sai !

1 tháng 12 2016

Xét dạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}.\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\sqrt{n}.\frac{1}{\sqrt{n}}+\sqrt{n}.\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)< \left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)=2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Thay vào đề bài ta có:

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2013\sqrt{2012}}\)

\(< 2.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(< 2.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2013}}\right)\)

\(< 2.\left(1-\frac{1}{\sqrt{2013}}\right)< 2\left(đpcm\right)\)

 

 

 

1 tháng 12 2016

Liên hợp