Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3+b3+c3=(a+b+c)3-3(a+b)(a+c)(b+c)
Vì a3+b3+c3 \(⋮\)6 nên [(a+b+c)3-3(a+b)(a+c)(b+c)] \(⋮\)6
Mà trong 3(a+b)(a+c)(b+c) luôn có ít nhất 1 số chẵn ( xét các trường hợp a,b,c lần lượt là : lẻ, lẻ, lẻ; chẵn,chẵn, chẵn; chẵn, lẻ, lẻ; chẵn, chẵn, lẻ;chẵn lẻ chẵn; lẻ chẵn lẻ; lẻ chẵn chẵn; lẻ lẻ chẵn..[tìm thêm ])
nên 3(a+b)(a+c)(b+c)\(⋮\)6
=> (a+b+c)3 phải chia hết cho 6
Lại có a,b,c là các số tự nhiên nên suy ra a+b+c phải chia hết cho 6.
a3+b3+c3=(a+b+c)(a^2+b^2+c^2−ab−bc−ac)+3abc
a^3+b^3+c^3=(a+b+c)(a^2+b2+c^2−ab−bc−ac)+3abc
=(a+b+c)[a2+b2+c2+2ab+2ac+2bc−3ac−3bc−3ab)+3abc=(a+b+c)[a2+b2+c2+2ab+2ac+2bc−3ac−3bc−3ab)+3abc
=(a=b+c)[(a+b+c)2−3(ab+bc+ac)]+3abc=(a=b+c)[(a+b+c)2−3(ab+bc+ac)]+3abc
*Nếu a+b+c⋮3⇒a3+b3+c3⋮3a+b+c⋮3⇒a3+b3+c3⋮3
*Nếu a3+b3+c3⋮3⇒(a+b+c)[(a+b+c)2−3(ab+bc+ca)]⋮3
⇒a+b+c⋮3a3+b3+c3⋮3
⇒(a+b+c)[(a+b+c)2−3(ab+bc+ca)]⋮3
⇒a+b+c⋮3
=>đpcm
Mk nhác ghi mũ lắm thông cảm nha Vd; a2=a^2
B=3+32+32+34+...+37+38+39+310
=3.(1+3+32+33+...+36+37+38+39)
=3.[(1+3)+(32+33)+...+(38+39)]
=3.[1(1+3)+32(1+3)+..+38(1+3)]
=3.[1.4+32.4+...+38.4]
=3.[4.(1+32+....+38)]
vì .[4.(1+32+....+38)] chia hết cho 4 nên 3.[4.(1+32+....+38)] chia hết cho 4
=> B chia hết cho 4
=>dpcm
b/
B=3+32+33+34+...+39+310
=(3+32)+(33+34)+....+(39+310)
=1.(3+32)+32+(3+32)+...+38(3+32)
=1.12+32.12+...+38.12
=12(1+32+...+38) chia hết cho 12
=>dpcm
c/
B=3+32+33+...+38+39+310
=(3+32+33)+...+(38+39+310)
=1(3+32+33)+..+37(3+32+33)
=1.39+..+37.39
=39(1+...+37)
=13.3.(1+..+37) chia hết cho 13
=>dpcm
a) Ta có: B=3+3^2+3^3+...........+3^10
=(3+3^2)+(3^3+3^4)+........+(3^9+3^10)
=(3.1+3.3)+(3^3.1+3^3.3)+.........+(3^9.1+3^9.3)
=3(1+3)+3^3.(1+3)+...........+3^9.(1+3)
=3.4+3^3.4+........+3^9.4
=4(3.3^3+.....+3^9) chia hết cho 4 suy ra B chia hết cho 4
câu b), câu c) tương tự, bn ghép thành 1 cặp chứa 2 hoặc 3 số là ra
Xét hiệu: A=a3+b3+c3-a-b-c = (a3-a)+(b3-b)+(c3-c)
=a(a-1)(a+1) + b(b-1)(b+1) + c(c-1)(c+1)
Tích của 3 số nguyên liên tiếp luôn ⋮ 6 vì trong 3 số đó có 1 số chia hết cho 2 ; một số chia hết cho 3 (Điều hiển nhiên)
⇒ A ⋮ 6
Vậy nếu a3+b3+c3 chia hết cho 6 thì a+b+c chia hết cho 6 và ngược lại.(ĐPCM)
Xét \(\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)\)
\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)\)
Ta có \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮6\)(vì tích của 3 số nguyên/số tự nhiên liên tiếp)
Tương tự ta có \(\left(b^3-b\right)⋮6;\left(c^3-c\right)⋮6;\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)⋮6\)
Mà \(a+b+c+d⋮6\Rightarrow a^3+b^3+c^3+d^3⋮6\left(ĐPCM\right)\)
P/S: bt làm có bài này thôi :v
a) Ta có C = 5 + 52 + 53 + ... + 520
= 5(1 + 5 + 52 + ... + 519) \(⋮\)5 (ĐPCM)
b) Ta có C = 5 + 52 + 53 + 54 + ... + 519 + 520
= (5 + 52) + 52(5 + 52) + ... + 518(5 + 52)
= 30 + 52.30 + ... + 518.30
= 30(1 + 52 + ... + 518)
= 5.6.(1 + 52 + ... + 518)\(⋮\)6
c) Ta có C = (5 + 52 + 53 + 54) + (55 + 56 + 57 + 58) +... + (517 + 518 + 519 + 520)
= (5 + 52 + 53 + 54) + 54(5 + 52 + 53 + 54) + ... + 516(5 + 52 + 53 + 54)
= 780 + 54.780 + .... + 516.780
= 780(1 + 54 + ... + 516)
= 13.60.(1 + 54 + ... + 516) \(⋮\)13