K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

a, n và 2n + 1 

gọi d là ƯC( n;2n+1 ) 

=> ƯCLN( n;2n+1 ) = d

=> n \(⋮\) 

   2n + 1 \(⋮\) 

đê : : n \(⋮\) d => 2.n \(⋮\) d = 2n chia hết cho d

ta có : 2n + 1 - 2n 

     => 1 chia hết cho d

=> d = 1

vậy n và 2n + 1 là hai số nguyên tố cùng nhau ( sai thui )

15 tháng 11 2018

b, 2n  + 3 và 4n + 8

gọi d là ƯCLN( 2n + 3 ; 4n +  8 )

=> ƯCLN ( 2n + 3 ; 4n + 8 ) = d

=> 2n + 3 chia hết cho d

    4n + 8 chia hết cho d

để : 2n + 3 chi chia hết cho d => 4n + 6 chia hết cho d

ta có : 4n + 8 - 4n + 6 chia hết cho d

=> 2 chia hết cho d => d thuộc Ư(2); Ư(2)= { 1 ; 2 }

=> d = 1 HOẶC 2

vậy 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau

15 tháng 1 2018

a, Gọi d là ƯC ( 7n + 10 ; 5n + 7 ) 

Theo bài ra ta có : 7n + 10 chia hết cho d

=> 5 ( 7n + 10 ) chia hết cho d

=> 35n + 50 chia hết cho d ( 1 )

5n + 7 chia hết cho d 

=>7 ( 5n + 7 ) chia hết cho d

=> 35n + 49 chia hết cho d ( 2 )

Từ ( 1 ) và ( 2 ) => ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d 

=> 1 chia hết cho d

Vậy .....

b ) 14n + 3 và 21n + 4

Gọi d là ƯC ( 14n + 3 ; 21n + 4 )

Ta có : 14n + 3 chia hết cho d

=> 3 ( 14n + 3 ) chia hết cho d

=> 42n + 9 chia hết cho d ( 1 )

21n + 4 chia hết cho d

=> 2 ( 21n + 4 ) chia hết cho d

=> 42n + 8 chia hết cho d ( 2 )

Từ ( 1 ) và ( 2 ) => ( 42n + 9 ) - ( 42 n + 8 ) chia hết cho d

=> 1 chia hết cho d

Vậy ........

NV
3 tháng 1 2024

a,

Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow n+1\) và \(2n+3\) nguyên tố cùng nhau với mọi \(n\in N\)

Các câu sau em biến đổi tương tự

26 tháng 2 2020

Bài 2 : 

a ) Gọi ƯCLN của 3n + 4 và 2n + 3 là d .

Ta có : 2n + 3 chia hết cho d .

          3n + 4 chia hết cho d .

\(\Rightarrow\) 2n . 3 + 3 . 3 chia hết cho d .

      3n . 2 + 4 . 2 chia hết cho d .

\(\Rightarrow\) 6n + 9 chia hết cho d .

       6n + 8 chia hết cho d .

\(\Rightarrow\) ( 6n + 9 ) - ( 6n + 8 ) chia hết cho d .

\(\Rightarrow\) 1 chia hết cho d .

\(\Rightarrow\) d = 1

b)Gọi ƯCLN( 2n+5, 4n+9) là d

Ta có: 2n + 5 \(⋮\)d

          4n + 9 \(⋮\)d

\(\Rightarrow\)2n + 5 . 2 \(⋮\)d

         4n + 9 . 1  \(⋮\)d

\(\Rightarrow\)4n + 10 \(⋮\)d

         4n + 9 \(⋮\)  d

\(\Rightarrow\left(4n+10\right)-\left(4n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy 2n + 5 và 4n + 9 nguyên tố cùng nhau.

10 tháng 11 2016

a)Gọi ƯCLN(3n+5;2n+3)=d

=> 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d

=>2n+3 chia hết cho d => 3(2n+3) chia hết cho d=> 6n+9 chia hết cho d

=>6n+10-(6n+9) chia hết cho d

=>1 chia hết cho d hay d=1

Do đó, ƯCLN(3n+5;2n+3)=1

Vậy 3n+5; 2n+3 là hai số nguyên tố cùng nhau

b)Gọi ƯCLN(5n+2;7n+3)=a

=>5n+2 chia hết cho a => 7(5n+2) chia hết cho a=> 35n+14 chia hết cho a

=>7n+3 chia hết cho a =>5(7n+3) chia hết cho a=> 35n+15 chia hết cho a

=> 35n+15-(35n+14) chia hết cho a

=>1 chia hết cho a hay a=1

Do đó, ƯCLN(5n+2;7n+3)=1

Vậy 5n+2 và 7n+3 là hai số nguyên tố cùng nhau

2 tháng 12 2017

a) Gọi d là ƯCLN(3n+5, 2n+3), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+5\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+10⋮d\\6n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(3n+5,2n+3\right)=1\)

\(\Rightarrow\) 3n+5 và 2n+3 là hai số nguyên tố cùng nhau.

b) Gọi d là ƯCLN(5n+2,7n+3), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}5n+2⋮d\\7n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(5n+2\right)⋮d\\5\left(7n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+14⋮d\\35n+15⋮d\end{cases}}}\)

\(\Rightarrow\left(35n+15\right)-\left(35n+14\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(5n+2,7n+3\right)=1\)

\(\Rightarrow\) 5n+2 và 7n+3 là hai số nguyên tố cùng nhau.

10 tháng 11 2016

a)Gọi UCLN(3n+5;2n+3)=d

Ta có:

[2(3n+5)]-[3(2n+3)] chia hết d

=>[6n+10]-[6n+9] chia hết d

=>1 chia hết d

=>3n+5 và 2n+3 là 2 số nguyên tố cùng nhau

b)Gọi UCLN(5n+2;7n+3)=d

Ta có:

[5(7n+3)]-[7(5n+2)] chia hết d

=>[35n+15]-[35n+14] chia hết d

=>1 chia hết d

=>5n+2 và 7n+3 là hai số nguyên tố cùng nhau

a) Gọi ƯCLN( 2n+3; 4n+8)=d      \(\left(d\in N\cdot\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2n+3\right)⋮d\\\left(4n+8\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(4n+6\right)⋮d\\\left(4n+8\right)⋮d\end{matrix}\right.\)

\(\Rightarrow2⋮d\Leftrightarrow d\inƯ\left(2\right)=\left\{1;2\right\}\)

Nếu \(d=2\) thì \(\left(2n+3\right)⋮2\), vô lý

\(\Rightarrow d=1\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)

Vậy ta có đpcm.

b) Gọi ƯCLN(7n+3;5n+2)=d            \(\left(d\in N\cdot\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\left(7n+3\right)⋮d\\\left(5n+2\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5\left(7n+3\right)⋮d\\7\left(5n+2\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(35n+15\right)⋮d\\\left(35n+14\right)⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

nên ƯCLN(7n+3;5n+2)=1         

Vậy ta có đpcm.

 

 

3 tháng 12 2017

Cau 2 la co bao nhieu trang,cau 3 viet sai , phai la 14n va 21n

Cau 1 :De 1*78* chia cho 5 du 3 thi phai co chu so tan có cung la 3 hoac 8

Ma so do phai chia het cho 2 nen co chu so tan cung la 8 . Ta duoc 1*788

De 1*788 chia het cho 9 thi :(1+*+7+8+8) chia het cho 9.........ta co 24+* chia het cho 9

Vay so do =13788

Cau 3:(14n;21n)=(14n;7n)=(7n;7n)=1

Vay 14n va 21n la 2 so nguyen to cung nhau 

Cau4: Minh chua hieu de hoac la de sai chu may so do deu chia get cho 3

3 tháng 12 2017

giúp mình với mình đang cần gấp

17 tháng 2 2018

Cho tam giác ABC cân tại A (AB=AC).Gọi D, E lần lượt là trung điểm của AB và AC.Gọi K là giao điểm của BE và CD.Chứng minh AK là tia phân giác của góc BAC.

17 tháng 2 2018

Đề sai nhé, với mọi n khác 1 thì 2 số ko nguyên tố cùng nhau nha