Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thiếu đề ak bạn, đề cho a thuộc Q, chưa cho điều kiện j mà sao hỏi b thuộc j
điều kiện còn ở dưới nửa nha bn đọc kĩ đề tồi ý kiến .OK =_=
O A B x y C D I
Xét \(\Delta OAI\)và \(\Delta OBI\). Có:
OI cạnh chung
góc AOI = góc BOI ( Oz tia phân giác góc xOy)
góc OAI = góc OBI (=\(90^0\))
\(\Rightarrow\Delta OAI=\Delta OBI\left(g.c.g\right)\)
câu b đợi mk chụp ảnh lên cho
a) Đặt A=\(\frac{x^2-1}{x^2}\)
Ta có:
\(\Rightarrow A=\frac{x^2}{x^2}-\frac{1}{x^2}\)
\(\Rightarrow A=1-\frac{1}{x^2}\)
\(\Rightarrow x\in Z\) để thỏa mãn A<0
b)\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
=>(a^2+b^2)*cd=(c^2+d^2)*ab
a^2cd+b^2cd=abc^c+abd^2
a^2cd+b^2cd-c^2ab-d^2ab=0
(a^2cd-abd^2+(b^2cd-abc^2)=0
ad(ac-bd)-bc(ac-bd)=0
(ad-bc)(ac-bd)=0
=>ad-bc=0 hoặc ac-bd=0
ad=bc ac=bd
=>a/b=c/d hoặc a/d=b/c
Bài 1:
a)
Thay x=0 vào hàm số \(y=f\left(x\right)=2x^2-8\), ta được
\(2\cdot0^2-8=0-8=-8\)
Vậy: -8 là giá trị của hàm số \(y=f\left(x\right)=2x^2-8\) tại x=0
Thay x=-2 vào hàm số \(y=f\left(x\right)=2x^2-8\), ta được
\(2\cdot\left(-2\right)^2-8=2\cdot4-8=8-8=0\)
Vậy: 0 là giá trị của hàm số \(y=f\left(x\right)=2x^2-8\) tại x=-2
Thay x=3 vào hàm số \(y=f\left(x\right)=2x^2-8\), ta được
\(2\cdot3^2-8=2\cdot9-8=18-8=10\)
Vậy: 10 là giá trị của hàm số \(y=f\left(x\right)=2x^2-8\) tại x=3
b) Khi y=0 thì \(2x^2-8=0\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x\in\left\{2;-2\right\}\)
Vậy: Khi y=0 thì \(x\in\left\{2;-2\right\}\)
c) Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow2x^2\ge0\forall x\)
\(\Rightarrow2x^2-8\ge-8\forall x\)
Dấu '=' xảy ra khi \(x^2=0\Leftrightarrow x=0\)
Vậy: Giá trị nhỏ nhất của biểu thức \(F\left(x\right)=2x^2-8\) là -8 khi x=0
Bài 2:
a) Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AB=AC(ΔABC cân tại A)
AI là cạnh chung
Do đó: ΔAIB=ΔAIC(cạnh huyền-cạnh góc vuông)
⇒IB=IC(hai cạnh tương ứng)
b) Ta có: AE+EB=AB(E nằm giữa A và B)
AF+FC=AC(F nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và AE=AF(gt)
nên EB=FC
Xét ΔEIB và ΔFIC có
EB=FC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
BI=CI(cmt)
Do đó: ΔEIB=ΔFIC(c-g-c)
⇒IE=IF(hai cạnh tương ứng)
Xét ΔIEF có IE=IF(cmt)
nên ΔEIF cân tại I(định nghĩa tam giác cân)
c) Xét ΔAEF có AE=AF(gt)
nên ΔAEF cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{AEF}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAEF cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AEF}=\widehat{ABC}\)
mà \(\widehat{AEF}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên EF//BC(dấu hiệu nhận biết hai đường thẳng song song)
Ta có: EF//BC(cmt)
AI⊥BC(gt)
Do đó: EF⊥AI(định lí 2 từ vuông góc tới song song)
Đặt a/b = c/d = k (1)
=> a = bk; c = dk
Ta có: x . a + y . c / x . b + y . d
= x . b . k + y . d . k / x . b + y . d
= k . (x . b + y . d) / (x . b + y . d) . 1
= k (2)
Từ (1) và (2) => a/b = x . a + y . c / x . b + y . d