Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm DC.
Chứng minh HE// IF( vì cùng //BC)
=> HE vuông FK ( vì FK vuông IF)
Tương tự HF// EI( vì cùng //AD)
=> HF vuông EK( vì EK vuông IE)
Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC
a: Ta có: \(\widehat{OAB}=\widehat{ODC}\)
\(\widehat{OBA}=\widehat{OCD}\)
mà \(\widehat{ODC}=\widehat{OCD}\)
nên \(\widehat{OAB}=\widehat{OBA}\)
hay ΔOAB cân tại O
a) Xét tam giác \(ADC\) có \(OF//DC\), theo định lí Thales ta có:
\(\frac{{AF}}{{AD}} = \frac{{AO}}{{AC}}\) (1)
Xét tam giác \(ABC\) có \(OE//BC\), theo định lí Thales ta có:
\(\frac{{AE}}{{AB}} = \frac{{AO}}{{AC}}\) (2)
Từ (1) và (2) suy ra, \(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)
Xét tam giác \(ABD\) có:
\(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)
Theo định lí Thales đảo suy ra \(EF//BD\).
b) Xét tam giác \(ADC\) có \(OH//AD\), theo định lí Thales ta có:
\(\frac{{CH}}{{CD}} = \frac{{CO}}{{AC}}\) (3)
Xét tam giác \(ABC\) có \(OG//AB\), theo định lí Thales ta có:
\(\frac{{CG}}{{BC}} = \frac{{CO}}{{AC}}\) (4)
Từ (3) và (4) suy ra, \(\frac{{CH}}{{CD}} = \frac{{CG}}{{BC}}\)
Theo định lí Thales đảo suy ra \(GH//BD\).
Xét tam giác \(BCD\) có \(GH//BD\), theo định lí Thales ta có:
\(\frac{{CH}}{{DH}} = \frac{{CG}}{{BG}} \Rightarrow CH.BG = DH.CG\) (điều phải chứng minh).
a: Xét ΔADC có OF//DC
nên AF/AD=AO/AC
Xét ΔABC có EO//BC
nên AE/AB=AO/AC
=>AF/AD=AE/AB
=>EF//BD
b: OH//AD
=>CH/CD=CO/CA
OG//AB
=>CG/BC=CO/CA
=>CG/BC=CH/CD
=>GH//BD
=>CH/DH=CG/BG
=>CH*BG=DH*CG
Mọi người giải giúp mình ạ, mình cảm ơn nhiều <333
Không bít giải xin lũi bn nha :(