K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

Đáp án A

Xét 1 hàng (hay 1 cột bất kì). Giả sử trên hàng đó có x số 1 và y số -1. Ta có tổng các chữ số trên hàng đó là x - y. Theo đề bài có x - y = 0 ⇔ x = y

Lần lượt xếp các số vào các hàng ta có số cách sắp xếp là 3!.3!.2.1 =72 (Cách)

4 tháng 5 2018

26 tháng 12 2020

Câu 1 cách làm theo như khả năng tính toán chệch 100% của mình thì....dài kinh khủng khiếp luôn á bro :D Nên mình chỉ làm câu 2 thôi nhó

Điền 9 số vào 9 ô vuông \(\Rightarrow n\left(\Omega\right)=9!\)

Gọi A là biến cố “Mỗi hàng, mỗi cột đều có ít nhất 1 số lẻ”

\(\Rightarrow\overline{A}\): “Tồn tại hàng hoặc cột không có số lẻ” <này là biến cố xung khắc của biến cố A đó nhó>

Do chỉ có 4 số chẵn nên chỉ có thể xảy ra trường hợp có 1 hàng hoặc 1 cột không có số lẻ.

*Hàng thứ nhất không có số lẻ

Chọn 3 số chẵn trong 4 số chẵn điền vào hàng đầu tiên có:

\(A^3_4\)(cách)

6 số còn lại điền vào 6 ô còn lại có 6! Cách

\(\Rightarrow A^3_4.6!\) (cách)

*Tương tự 2 hàng còn lại và 3 cột còn lại

\(n\left(\overline{A}\right)=6.24.6!\)

\(\Rightarrow P\left(\overline{A}\right)=\dfrac{6.24.6!}{9!}=...\Rightarrow P\left(A\right)=1-P\left(\overline{A}\right)=...\)

27 tháng 12 2020

29 tháng 5 2018

Chọn B

Ta có 

Xét A ¯ : Có ít nhất một hàng hoặc một cột chỉ toàn số chẵn.

Vì chỉ có 4 số chẵn là 2, 4, 6, 8 nên chỉ có thể có đúng một hàng hoặc đúng một cột chỉ toàn các số chẵn. Để điền như vậy cần chọn một trong số ba hàng hoặc ba cột rồi chọn 3 số chẵn xếp vào hàng hoặc cột đó, 6 số còn lại xếp tùy ý. Do đó 

Vậy 

14 tháng 5 2018

25 tháng 12 2017

24 tháng 4 2018

Chọn C                 

Số phần tử của không gian mẫu 

Gọi A là biến cố “mỗi hàng, mỗi cột bất kì đều có ít nhất một số lẻ”.

A ¯  là biến cố “có một hàng, hoặc một cột đều là số chẵn”

Vì có 4 số chẵn nên chỉ có một hàng hoặc một cột xếp toàn số chẵn

Có 6 cách chọn ra một hàng hoặc hoặc một cột để xếp 3 số chẵn.

Có 6 cách chọn một ô không thuộc hàng đó để xếp tiếp 1 số chẵn nữa

Có 4! cách xếp 4 số chẵn và 5! xếp 5 số lẻ.

Vậy xác xuất .

10 tháng 11 2024

法定函谷关个GIz,zz