K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7bk-4b}{3bk+5b}=\dfrac{7k-4}{3k+5}\)

\(\dfrac{7c-4d}{3c+5d}=\dfrac{7dk-4d}{3dk+5d}=\dfrac{7k-4}{3k+5}\)

Do đó: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)

b: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

5 tháng 10 2015

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{q^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)

=> \(\frac{a^2}{4}=4\Rightarrow a^2=4.4=16\Rightarrow a=+-4\)

=>\(\frac{b^2}{9}=4\Rightarrow b^2=4.9=36\Rightarrow b=+-6\)

=>\(\frac{2c^2}{32}=4\Rightarrow c^2=4.32:2=64\Rightarrow c=+-8\)

5 tháng 10 2015

Câu 2 :

Ta có : \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

20 tháng 8 2016

b) ab(c^2+d^2)=ab.c^2+ab.d^2=(a.c)(b.c)+(a.d)(b.d)
cd(a^2+b^2)=cd.a^2+cd.b^2=(c.a)(d.a)+(c.b)(d.b)
(a.c)(b.c)+(a.d)(b.d)=(c.a)(d.a)+(c.b)(d.b) vì mỗi vế đều bằng nhau

23 tháng 12 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)

a) Từ (*) ta có:

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\) (1)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\) (2)

Từ (1) và (2) suy ra \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

b) Từ (*) ta có:

\(\dfrac{a}{b}=\dfrac{bk}{b}=k\) (3)

\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (4)

Từ (3) và (4) suy ra \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)

c) Từ (*) ta có:

\(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{bk}{b\left(3k+1\right)}=\dfrac{k}{3k+1}\) (5)

\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{dk}{d\left(3k+1\right)}=\dfrac{k}{3k+1}\) (6)

Từ (5) và (6) suy ra \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

d) Từ (*) ta có:

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) (7)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (8)

Từ (7) và (8) suy ra \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

e) Từ (*) ta có:

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (9)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2.k^2-b^2}{d^2.k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b}{d}\) (10)

Từ (9) và (10) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

f) Từ (*) ta có:

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (11)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\dfrac{b}{d}\) (12)

Từ (11) và (12) suy ra \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

25 tháng 6 2017

a, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có: \(\frac{3a+5b}{2a-7b}=\frac{3bk+5b}{2bk-7b}=\frac{b\left(3k+5\right)}{b\left(2k-7\right)}=\frac{3k+5}{2k-7}\) (1)

\(\frac{3c+5d}{2c-7d}=\frac{3dk+5d}{2dk-7d}=\frac{d\left(3k+5\right)}{d\left(2k-7\right)}=\frac{3k+5}{2k-7}\) (2)

Từ (1) và (2) suy ra đpcm

b,Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}\Rightarrow\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) (3)

Lại có \(\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\) (4)

Từ (3) và (4) suy ra đpcm

25 tháng 6 2017

Cảm ơn bn nhiều.

12 tháng 10 2016

Bài 1:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{3a+2c}{3b+2d}\)

Vậy \(\frac{a}{b}=\frac{c}{d}=\frac{3a+2c}{3b+2d}\)

12 tháng 10 2016

Bài 2:

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: \(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)

\(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(bk\right)^2-\left(dk\right)^2}{b^2-d^2}=\frac{b^2.k^2-d^2.k^2}{b^2-d^2}=\frac{k^2.\left(b^2-d^2\right)}{b^2-d^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)

Bài 3: Tương tự nhé bạn chỉ cần thay a = bk, c = dk vào thôi