K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
14 tháng 1 2022

ta có độ dài AB là : \(\left(17+7\right):2=12cm\)

độ dài AC là : \(12-7=5cm\)

độ dài cạnh BC là : \(BC=\sqrt{12^2+5^2}=13cm\)

Chu vi tam giác ABC là : \(AB+BC+AC=12+5+13=30cm\)

DIện tích tam giác ABC là : \(AB\times\frac{AC}{2}=12\times\frac{5}{2}=30cm^2\)

15 tháng 4 2018

VÌ  tam giác vuông nên ta có định lý PY-ta - go :

AB2 + AC2 = BC2

62 + AC2 = 102

AC2 = 10- 62

         = 100 - 36

        = 64

=>AC = 8

CHU VI TAM GIÁC ABC : 6 +10 + 8 = 24 CM

VẬY : AC : 8 cm

          Chu vi tam giác ABC : 24 cm

, Xét tg ABC và tg HBA có:
       góc H = góc A (= 90o)
       góc B chung
=> Tg ABC đông dạng với tg HBA

30 tháng 1 2019

tu ve hinh :

a, xet tamgiac MBK va tamgiac MCH co : 

goc BKM = goc CHM = 90do MK | AB va MH | AC 
tamgiac ABC can tai A (gt)  => goc ABC = goc ACB (tc)

MB = MC do M la trung diem cua BC (gt)

=>  tamgiac MBK = tamgiac MCH (ch - gn)

30 tháng 1 2019

hmb và kcm cơ ma

22 tháng 4 2017

bai 1:

a) AB là hình chiếu xuống BC là HB . AC là đường chiều xuống của HC .mà AB> AC . suy ra HB>HC 

b) ta co HB>HC => goc C > goc B ( tc canh va goc doi dien 

c) do  HB > HC =>  BAH > CAH( tc cạnh và góc đối diện)

nhớ k nhé bn yêu. đúng sai k biết đâu

12 tháng 1 2022

AH=1/2 AC

AH=1/2 . 40 => AH = 20

Tam giác ABH vuông tại H ( GT)

Áp dụng định lý pytago ta có : AH2 + BH2 = AB2

Thay số ta đc ;20+ BH= 29

=> BH= 202 - 29 ( tự tính nha )

Tam giác ACH vuông tại H ( GT)

Áp dụng định lý pytago ta có : AH2 + CH2 = AC2 (thay số rr tự tính )

B chu vi khi tính đc BH và CH r thì tính đc BC .sau đó tính chu vi tam giác là các cạnh cộng lại vs nhau là đc 

 

12 tháng 1 2022

chuyên toán nó phải gọi là đẳng cấp :)))))))

26 tháng 4 2022

a) Xét \(\Delta ABE\) và \(\Delta HBE\) có:

\(\widehat{BAE}=\widehat{BHE}=90^0\) (gt)

\(BE\) chung

\(\widehat{ABE}=\widehat{HBE}\) (tính chất phân giác)

\(\Rightarrow\Delta ABE=\Delta HBE\) (ch - gn)

b) Xét \(\Delta AEK\) và \(\Delta HEC\) có:

\(\widehat{EAK}=\widehat{EHC}=90^0\)

\(AE=EH\) (hai cạnh tương ứng)

\(\widehat{AEK}=\widehat{HEC}\) (hai góc đối đỉnh)

\(\Rightarrow\Delta AEK=\Delta HEC\) (g.c.g) \(\Rightarrow EK=EC\) (Hai cạnh tương ứng)

c) Ta có \(AE=EH\)

Mà \(EH< EC\) (do \(\Delta HEC\) vuông tại \(H\))

\(\Rightarrow AE< EC\)