K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) \(N\), \(E\) lần lượt là trung điểm của \(AC\) và \(BC(gt)\); Suy ra \(NE\) là đường trung bình của tam giác \(ABC\).

Suy ra \(NE\) // \(AB\)

Suy ra tứ giác \(ANEB\) là hình thang.

Mà \(\widehat {NAB} = 90^\circ \) (do \(\Delta ABC\) vuông tại \(A\))

Do đó tứ giác \(ANEB\) là hình thang vuông.

b) \(M\), \(E\) lần lượt là trung điểm của \(AB\) và \(BC\) (gt);

Suy ra \(ME\) là đường trung bình của \(\Delta ABC\)

Suy ra \(ME\) // \(AC\) hay \(ME\) // \(AN\)

Mà  \(AM\) // \(NE\) (do \(AB\) // \(NE\))

Suy ra tứ giác \(AMEN\) là hình bình hành

Mà \(\widehat {{\rm{MAN}}} = 90^\circ \) nên \(AMEN\) là hình chữ nhật

c) Xét tứ giác \(BMFN\) có: \(MF\) // \(BN\) (gt) và \(BM\) // \(FN\) (do \(AB\) // \(NE\))

Suy ra \(BMFN\) là hình bình hành

Suy ra \(BM = FN\)

Mặt khác \(NE = AM\) (Tứ giác \(ANEM\) là hình chữ nhật) và \(AM = BM\)

Suy ra \(FN = NE\)

Tứ giác \(AFCE\) có \(N\) là trung điểm của \(AC\) và \(EF\)

Suy ra \(AFCE\) là hình bình hành

Mà \(AC \bot EF\)

Do đó \(AFCE\) là hình thoi

d) Xét tứ giác \(ADBE\) ta có: \(DE\) và \(AB\) cắt nhau tại \(M\) (gt)

Mà \(M\) là trung điểm của \(AB\) (gt)

\(M\) là trung điểm của \(DE\) (do \(D\) đối xứng với \(E\) qua \(M\))

Suy ra \(ADBE\) là hình bình hành

Suy ra \(AD\) // \(BE\) hay \(AD\) // \(EC\)

Mà \(AF\) // \(EC\)  (do \(AECF\) là hình thoi)

Suy ra \(A,D,F\) thẳng hàng (1)

Mà \(ADBE\) là hình bình hành

Suy ra \(BE\) // \(AD\)

Mà \(AF = EC\) (do \(AFCE\) là hình thoi); \(EB = EC\) (gt)

Suy ra \(AD = AF\)(2)

Từ (1) và (2) suy ra \(A\) là trung điểm của \(DF\)

17 tháng 12 2021

MÌNH ĐANG CẦN GẤP

17 tháng 12 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay BMNC là hình thang

12 tháng 4 2020

a) Xét \(\Delta\)ABC ta có : 

M là trung điểm AB 

N là trung điểm AC 

=> MN là đường trung bình 

=> MN//BC , MN = 1/2 BC (1)

=> MNCB là hình thang 

b) Xét tam giác ABC ta có : 

N , P là trung điểm AC , BC (2)

=> NP là đường trung bình 

Từ (1) và (2) => MNPB là hình bình hành

15 tháng 4 2020

a) Xét \(\Delta\)ABC có: M; N là trung điểm của AB; AC 

=> MN là đường trung bình của \(\Delta\)ABC  (1)

=> MN//BC 

=> BCNM là hình thang 

b) (1) => MN //= \(\frac{1}{2}\) BC  mà BP = \(\frac{1}{2}\)BP  va B; P; C thẳng hàng  ( vì P là trung điểm BC ) 

=> MN// = BP => MNPB là hình bình hành 

c) MN // BC => MN // HP => MNHP là hình thang 

(b) => ^MNP = ^MBP => ^MNP = ^MBH (2) 

Lại có: ^NMH = ^MHB ( so le trong )  ( 3) 

Mặt khác: \(\Delta\)AHB vuông tại H có HM là trug tuyến đáy AB 

=> HM = \(\frac{1}{2}\)AB = BM 

=> \(\Delta\)MHB cân tại M => ^MBH = ^MHB  (4) 

Từ (2) ; (3) ; (4) => ^NMH = ^MNP 

=> MNPH là hình thang cân 

b) Điều kiện để HPNM là hình chữ nhật: 

Ta có: HPNM là hình thang cân

=> HPNM là hình chữ nhật  MH vuông góc BC 

Mặt khác ta có: AH vuông góc BC 

=> A; M; H thẳng hàng mà A; M; B thẳng hàng 

=> H trùng B 

=> Tam giác ABC vuong tại B.

15 tháng 4 2020

a) tam giác ABC có M ; N là trug điểm của AB ; AC

=) MN là trug bình của TG ABC (1)

=) MN/BC

=) BCNM là hình thag 

(mik chia ra nhé)

22 tháng 11 2016

Xét tam giác ABC có EA=EB ;MB=MC

suy ra ME là đường trung bình cũa tam giác ABC

suy ra ME // AC hay gócAEM=900 (1)

Tương tự góc MFA=900 (2)

góc EAF=900 (3)

từ (1) ;(2) ;(3) suy ra AEMF là hình chữ nhật

23 tháng 4 2020

a)ta có : A=E=F=90 => AEHF hình chữ nhật

b)ta có: Am=AN, HM=MC =>ACNH hbh

Ta có AH//CN => AHE =CNH (đv) = FEH mà FC//NE => EFCN hìn thang cân 

c)ta có OC, AM là trung tuyến của ∆ACH cắt nhau tại G => G là trọng tâm => AG =2/3 AM=2/3*AN/2=AN/3

=>AN=3AG