K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

S ABC=1/2*6*8=3*8=24cm2

Xet ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5=8/8=1

=>AD=3cm; CD=5cm

 

b: Xét ΔABC vuông tại A và ΔHCA vuông tại H co

góc C chung

=>ΔABC đồng dạngvới ΔhAC

c: IH/IA=BH/BA

AD/DC=BA/BC

mà BH/BA=BA/BC

nên IH/IA=AD/DC

d:

góc AID=góc BIH=góc ADB=góc ADI

=>ΔADI can tại A

17 tháng 3 2023

Ai giúp tui đi cho 5 sao

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AD/DC=BA/BC=6/10=3/5

b: Xét ΔHBA vuông tạiH và ΔABC vuôg tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

màgóc DBC=góc ABD

nên góc AID=góc ADI

=>ΔAID cân tại A

a: BC=10cm

Xét ΔABC có BD là phân giác

nên DA/AB=DC/BC

=>DA/6=DC/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:DA=3cm; DC=5cm

b: Xét ΔBHA có BI là phân giác

nên IH/IA=BH/BA(1)

Xét ΔABC có BD là phân giác

nên AD/DC=BA/BC(2)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

hay BA/BC=BH/BA(3)

Từ (1), (2) và (3) suy ra IH/IA=AD/DC

24 tháng 4 2017

a, áp dụng định lí py-ta-go để tính cạnh BC 

   áp dụng đường phân giác BD suy ra tỉ số AD/AB=DC/BC

 từ đó thay số vào và tính được AD và DC

b,Xét tam giác ABD và tam giác HBI có :

         BAD=BHI (=90 độ)

         B1=B2(p/g)

suy ra : 2 tam giác đồng dạng và lập tỉ số AB/BD=HB/BI

suy ra :AB.BI=BD.HB(đccm)

c,Vì trong tam giác ABD có :góc BDA + B1 =90dộ

                            BIH có :góc BIH +B2 +90độ

                            mà B1=B2

suy ra :góc BDA =AID . Suy ra tam giác AID cân tại A . 

24 tháng 4 2017

A) Theo định lý Py-ta-go trong tam giác ABC vuông tại A ta có :

 \(BC^2=AB^2+AC^2\)\(\Leftrightarrow BC^2=6^2+8^2=100\)\(\Leftrightarrow BC=\sqrt{100}=10\)

 Do BD là đường phân giác của góc \(\widehat{D}\)nên ta có tỉ lệ : \(\frac{AD}{DC}=\frac{AB}{BC}\)

theo tính chất  tỉ lệ thức ta có : \(\frac{AD}{DC+AD}=\frac{AB}{BC+AB}\)hay \(\frac{AD}{8}=\frac{6}{14}\)\(\Rightarrow AD=\frac{6\cdot8}{14}\approx3,43\)

                                                                                                                     \(\Rightarrow DC=AC-AD=8-3,43=4,57\)

 B) Xét \(\Delta BIH\)và \(\Delta ABD\)có : \(\widehat{BAD}=\widehat{BHI}\)và   \(\widehat{ABD}=\widehat{IBH}\)(Do BD là đường phân giác của góc D)

\(\Rightarrow\Delta BHI\)\(\infty\) \(\Delta BAD\)(g.g)  ;     Ta được tỉ lệ : \(\frac{BH}{AB}=\frac{BI}{BD}\)\(\Rightarrow AB\cdot BI=BH\cdot BD\left(đpcm\right)\)

 C) C\m theo tam giác có hai cạnh bên bằng nhau là tam giác cân

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)(Định lí tia phân giác của tam giác)

\(\Leftrightarrow\dfrac{AD}{6}=\dfrac{DC}{10}\)

mà AD+DC=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{DC}{10}=\dfrac{AD+DC}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)

Vậy: AD=3cm; DC=5cm

21 tháng 3 2021

A B C 6 8 H D I

a, Xét tam giác ABC vuông tại A, có AH là đường cao 

Áp dụng định lí Py ta go ta có : 

\(BC^2=AB^2+AC^2=36+64\)

\(\Rightarrow BC^2=100\Rightarrow BC=10\)cm 

Vì BD là phân giác ^ABC nên 

\(\frac{AB}{BC}=\frac{AD}{DC}\)(1) mà \(AD=AC-DC=8-DC\)

hay \(\frac{6}{10}=\frac{8-DC}{DC}\Rightarrow6DC=80-10DC\)

\(\Leftrightarrow16DC=80\Leftrightarrow DC=5\)cm 

\(\Rightarrow AD=AC-DC=8-5=3\)cm 

b, Xét tam giác BHA và tam giác BAC ta có 

^BHA = ^A = 900

^B _ chung 

Vậy tam giác BHA ~ tam giác BAC ( g.g )

\(\Rightarrow\frac{BH}{BA}=\frac{AB}{BC}\) ( tỉ số đồng dạng ) (2) 

Từ (1) và (2) \(\Rightarrow\frac{BH}{BA}=\frac{AD}{DC}\)(3)

xem lại đề đi nếu như thành \(\frac{IH}{AD}=\frac{IA}{DC}\)

sao lại có tam giác IHA được ? hay còn cách nào khác ko ? 

23 tháng 3 2021

cần phần c

 

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{6}=\dfrac{CD}{10}\)

=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)

mà AD+CD=AC=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)

=>\(AD=3\cdot1=3\left(cm\right);DC=5\cdot1=5\left(cm\right)\)

b: Xét ΔBAH có BI là phân giác

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\left(1\right)\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\left(2\right)\)

Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

góc ABH chung

Do đó: ΔBHA~ΔBAC

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)

c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

\(\widehat{ABD}=\widehat{HBI}\)

Do đó: ΔBAD~ΔBHI

=>\(\dfrac{BA}{BH}=\dfrac{BD}{BI}\)

=>\(BA\cdot BI=BD\cdot BH\)

Ta có: ΔBAD~ΔBHI

=>\(\widehat{BDA}=\widehat{BIH}\)

mà \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔAID cân tại A

b) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(Gt)

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\)(Tính chất đường phân giác của tam giác)(1)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\)(Tính chất đường phân giác của tam giác)(2)

Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔABH∼ΔCBA(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)(đpcm)

9 tháng 3 2022

Dành cho anh em nào cần phần C nha

Xét ∆HIB và ∆AID có:

Góc IHB= góc IAD

     Góc I( đối đỉnh)

Suy ra ∆HIB đồng dạng vs ∆ AID

Suy ra góc HBI = ADI

Mà tâm giác BIH vuông tại H nên Góc HBI = BIH

Mà hai góc I đối đỉnh nên góc HBI = AID 

Mà góc HBI = ADI 

Nên góc ADI = góc AID 

Suy ra tâm giác AID cân (đpcm) (hơi dài nhỉ nhưng có cách ngắn nhưng nó sẽ không chi tiết mong ae thông cảm )

 

 

 

 

 

b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

Do đó:ΔBAD đồng dạng với ΔBHI

Suy ra: BA/BH=BD/BI

hay \(BA\cdot BI=BH\cdot BD\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

hay ΔAID cân tại A

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ sốbằng nhau, ta được:

AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

Do đó:ΔBAD đồng dạng với ΔBHI

Suy ra: BA/BH=BD/BI

hay \(BA\cdot BI=BH\cdot BD\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

hay ΔAID cân tại A