Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ANHM có
\(\widehat{ANH}+\widehat{AMH}=180^0\)
Do đó: ANHM là tứ giác nội tiếp
hay A,N,H,M cùng thuộc 1 đường tròn
a) Xét tứ giác BIKC có \(\widehat{BIC}=\widehat{BKC}=90^0\)
\(\widehat{BIC}\) và \(\widehat{BKC}\) cùng nhìn cạnh BC
Suy ra BIKC nội tiếp đường tròn đường kính BC
\(\Rightarrow\)B,I,K,C cùng thuộc 1 đường tròn đường kính BC
b) Xét tứ giác AIHK có \(\widehat{AIH}+\widehat{AKH}=90^0+90^0=180^0\)
Suy ra AIHK nội tiếp đường tròn
\(\Rightarrow\)A,I,H,K cùng thuộc 1 đường tròn
a) Do BE và CF là các đường cao trong tam giác ABC nên ˆBEC=90∘, ˆBFC=90∘
Tứ giác BCEF có góc E và góc F cùng nhìn cạnh BC và bằng nhau (cùng bằng 90∘) nên là tứ giác nội tiếp.
b) Tứ giác BCEF là tứ giác nội tiếp nên ˆAFE=ˆACB, mà ˆACB=ˆASB (cùng chắn cung AB) nên ˆAFE=ˆASB
Suy ra tứ giác BFMS là tứ giác nội tiếp.
Do đó ˆFMS=180∘−ˆFBS=90∘.. Vậy OA ⊥⊥ EF.
c)
+) Tứ giác BCEF nội tiếp nên ˆAEF=ˆABC (1)
Từ OA ⊥ PE suy ra ˆAIB=ˆAPE(cùng phụ với ˆMAP). (2)
Từ (1) và (2) suy ra ΔAPE∽ΔABI (g.g).
+) Tứ giác BHCS có BH // CS (cùng vuông góc với AS) và BS // CH (cùng vuông góc với AB) nên là hình bình hành. Do đó ba điểm H, K, S thẳng hàng.
Ta sẽ chứng minh hai góc đồng vị ˆPIM và HSM^ bằng nhau.
Tứ giác PDIM nội tiếp (vì có hai góc vuông M và D đối nhau) nên ˆPIM=ˆPDM (3)
Ta có:
ΔAHE∽ΔACDΔ nên AH.AD = AE.AC.
ΔAME∽ΔACSnên AM.AS = AE.AC.
Suy ra AH.AD = AM.AS ⇒AH/AM=AS/AD.
Do đó ΔMAH∽ΔDAS(c.g.c). Suy ra AHM^=ASD^.
Từ đó ta có tứ giác DHMS là tứ giác nội tiếp. Suy ra ˆHDM=ˆHSM. (4)
Từ (3) và (4) suy ra HS // PI, hay KH // PI.
a/ Ta có
\(BE\perp AC\Rightarrow\widehat{AEB}=90^o\)
\(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)
=> E và H cùng nhìn AB dưới 1 góc bằng 90 độ => E;H,A;B thuộc đường tròn bán kính = \(\frac{AB}{2}\) , tâm là trung điểm AB
b/ Ta có
\(\widehat{DBE}=\widehat{DFE}\) (Góc nội tiếp đường tròn tâm O cùng chắn cung DE)
\(\widehat{DBE}=\widehat{AHE}\) (Góc nội tiếp đường tròn ngoại tiếp HBAE cùng chắn cung AE)
\(\Rightarrow\widehat{DFE}=\widehat{AHE}\) => DF//AH (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc ở vị trí đồng vị bằng nhau thì chúng // với nhau)
Mà \(AH\perp BC\Rightarrow DF\perp BC\)
c/
Từ E dựng đường thẳng vuông góc với BC cắt (O) tại I => gia của BC với EI là trung điểm EI (đường kính vuông góc với dây cung thì chia đôi dây cung) => I là điểm đối xứng E qua BC.
Nối I với H, D với H
Xét \(\Delta HDF\) và \(\Delta HEI\) ta có
\(BC\perp DF;BC\perp EI\) => BC đi qua trung điểm của DF và EI => tg HDF và tg HEI là tam giác cân tại H (có BC là đường cao đồng thời là đường trung trực)
\(\Rightarrow\widehat{HEI}=\widehat{HIE};\widehat{HDF}=\widehat{HFD}\) (góc ở đáy của tg cân)
Ta có DF//EI (cùng vuông góc với BC) => sđ cung DE = sđ cung FI (Trong đường tròn hai cung bị chắn bởi 2 dây // với nhau thì = nhau)
\(\Rightarrow\widehat{HFD}=\widehat{HEI}\) (góc nội tiếp cùng chắn 2 cung có số đo bằng nhau)
\(\Rightarrow\widehat{HEI}=\widehat{HIE}=\widehat{HDF}=\widehat{HFD}\) => tg HDF đồng dạng với tg HEI
\(\Rightarrow\frac{HD}{HE}=\frac{HF}{HI}\Rightarrow HD.HI=HE.HF\)
a: Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó;ΔBEC vuông tại E
=>CE\(\perp\)BE tại E
=>CE\(\perp\)AB tại E
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó;ΔBDC vuông tại D
=>BD\(\perp\)DC tại D
=>BD\(\perp\)AC tại D
Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
b: Xét tứ giác AEHD có \(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)
=>AEHD là tứ giác nội tiếp đường tròn đường kính AH
=>A,E,H,D cùng nằm trên đường tròn đường kính AH
c: I là tâm của đường tròn đi qua 4 điểm A,E,H,D
=>I là trung điểm của AH
Gọi giao điểm của AH với BC là M
AH\(\perp\)BC
nên AH\(\perp\)BC tại M
\(\widehat{BHM}=\widehat{IHD}\)
mà \(\widehat{IHD}=\widehat{IDH}\)(ID=IH)
nên \(\widehat{BHM}=\widehat{IDH}\)
mà \(\widehat{BHM}=\widehat{BCD}\left(=90^0-\widehat{HBM}\right)\)
nên \(\widehat{IDH}=\widehat{BCD}\)
OB=OD
=>ΔODB cân tại O
=>\(\widehat{OBD}=\widehat{ODB}\)
=>\(\widehat{ODH}=\widehat{DBC}\)
\(\widehat{IDO}=\widehat{IDH}+\widehat{ODH}\)
\(=\widehat{DBC}+\widehat{DCB}\)
\(=90^0\)
=>ID\(\perp\)DO
a) Xét tứ giác BIKC có
\(\widehat{BIC}=\widehat{BKC}\left(=90^0\right)\)
nên BIKC là tứ giác nội tiếp
hay B,I,K,C cùng thuộc đường tròn đường kính BC(Vì \(\widehat{BIC}=\widehat{BKC}=90^0\))
b) Xét tứ giác AIHK có
\(\widehat{AIH}+\widehat{AKH}=180^0\)
nên AIHK là tứ giác nội tiếp
hay A,I,H,K cùng thuộc 1 đường tròn