K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

hình tự vẽ nha

Aps dụng py-ta-go vào tam giác vuông ABC , có

AB2+AC2=BC2

<=> AC=\(\sqrt{BC^2-AB^2}\)=24

áp dụng hệ thức lượng giác vào tam giác ABC có đường cao AH ứng với cạnh BC, có

AH*BC=AB*AC

<=> AH=(AB*AC)/BC=(24*7)/25=6.72

ÁP DỤNG PY-TA-GO VÀO TAM GIÁC ABH VÀ AHC TA ĐƯỢC BH=1.96, HC=23.04

áp dụng hệ thức lượng giác vào tam giác vuông ABH có đường cao DH ứng với cạnh AB, có

DH*AB=AH*BH

<=> DH=1.8816

TƯƠNG TỰ VỚI TAM GIÁC CÒN LẠI TA ĐƯỢC HE=6.4512

16 tháng 7 2018

A B C H E D

Dễ dàng chứng minh được:  \(HEAD\)là hình chữ nhật

\(\Rightarrow\)\(HE=AD=12\)

          \(HD=EA=18\)

Áp dụng hệ thức lượng ta có:

       \(HD^2=AD.DC\)

\(\Rightarrow\)\(DC=\frac{HD^2}{AD}\)

\(\Rightarrow\)\(DC=\frac{18^2}{12}=27\)

\(\Rightarrow\)\(AC=AD+DC=12+27=39\)

            \(HE^2=BE.AE\)

\(\Rightarrow\)\(BE=\frac{HE^2}{AE}\)

\(\Rightarrow\)\(BE=\frac{12^2}{18}=8\)

\(\Rightarrow\)\(AB=BE+EA=8+18=26\)

29 tháng 10 2015

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

25 tháng 12 2016

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)

2 tháng 8 2018

A B C H F E

a) Tứ giác AEHF có: góc A = góc E = góc F = 900

=>  AEHF là hình chữ nhật

b) Áp dụng hệ thức lượng ta có:

AB.AE = AH2

AC.AF = AH2

suy ra:  AB.AE = AC.AF