Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tam giác ABC cân tại A (Gt)
=> góc ABC = góc ACB (tc)
góc ABC + góc ABM = 180
góc ACB + góc ACN = 180
=> góc ABM = góc ACN ( do góc ABC = góc ACB do tam giac ABC cân nhá )
xét tam giác ABM và tam giác ACN có :
BM = CN (gt)
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác ABM = tam giác ACN (c-g-c)
=> AM = AN (đn)
=> tam giác AMN cân tại A (đn)
b, tam giác AMN cân tại A (câu a)
=> góc AMN = góc ANM (tc)
xét tam giác MBH và tam giác NCK có :
MB = CN (gt)
góc MHB = góc CKN = 90
=> tam giác MBH = tam giác NCK (ch-gn)
=> BH = CK (đn)
c, tam giác MBH = tam giác NCK (câu b)
=> góc HBM = góc KCN (đn)
góc HBM = góc CBO (đối đỉnh
) góc KCN = góc BCO (đối đỉnh)
=> góc CBO = góc BCO
=> tam giác BOC cân tại O
a)Xét tam giác ABM và tam giác CAN có:
BM=CN(gt)
AB=AC(do tam giác ABC cân)
\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)
Suy ra \(\Delta ABM=\Delta CAN\)(c.g.c)
Tgiac ABC cân tại A => AB = AC, góc ABC = ACB
a) góc ABC = ACB => góc ABM = ACN (góc kề bù)
Xét tgiac ABM và ACN có:
+ BM = CN
+ góc ABM =ACN (cmt)
+ AB = AC
=> Tgiac ABM = ACN (c-g-c)
=> đpcm
b) Do tgiac ABM = ACN (cmt) nên góc BAM = CAN (2 góc t/ứng)
Xét tgiac AHB và AKC có:
+ AB = AC
+ góc AHB = AKC = 90 độ
+ góc ABM = CAN
=> Tgiac AHB = AKC (ch-gn)
=> AH = AK (2 cạnh t/ứng)
=> đpcm
1
a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)
rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau
suy ra AM = AN
b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)
rồi chứng minh hai tam giác ABH và ACK bằng nhau
suy ra BH = CK
c) vì hai tam giác ABH và ACK bằng nhau (cmt)
nên AH = AK
d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)
nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)
còn lại tự cm
e) dễ cm tam giác ABC đều
vẽ \(BH\perp AC\)
nên BH vừa là đường cao; phân giác và trung tuyến
dễ cm \(\Delta BHC=\Delta NKC\)
nên \(\widehat{BCH}=\widehat{NCK}=60^0\)
từ đó dễ cm AMN cân và OBC dều
a, tam giác ABC cân tại A (Gt)
=> góc ABC = góc ACB (tc)
góc ABC + góc ABM = 180
góc ACB + góc ACN = 180
=> góc ABM = góc ACN
xét tam giác ABM và tam giác ACN có : BM = CN (gt)
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác ABM = tam giác ACN (c-g-c)
=> AM = AN (đn)
=> tam giác AMN cân tại A (đn)
b, tam giác AMN cân tại A (câu a)
=> góc AMN = góc ANM (tc)
xét tam giác MBH và tam giác NCK có : MB = CN (gt)
góc MHB = góc CKN = 90
=> tam giác MBH = tam giác NCK (ch-gn)
=> BH = CK (đn)
c, tam giác MBH = tam giác NCK (câu b)
=> góc HBM = góc KCN (đn)
góc HBM = góc CBO (đối đỉnh)
góc KCN = góc BCO (đối đỉnh)
=> góc CBO = góc BCO
=> tam giác BOC cân tại O (đl)