Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn vẽ hình nha.
a) tg AFC và tg AEB có :
góc A chung
góc AEB = góc AFC (=90 do)
=> tg AFC ~tg AEB (g.g)
=>\(\frac{AF}{AE}=\frac{AC}{AB}\) =>AB.AF=AE.AC
b) ta có AB.AF=AE.AC => \(\frac{AF}{AC}=\frac{AE}{AB}\)
tg AEF và tg ABC có
góc A chung
\(\frac{AF}{AC}=\frac{AE}{AB}\)
=> tg AEF ~tg ABC (c.g.c)
c) từ H vẽ HI vuông góc vs BC tại I
tg BHI và tg BCE có:
góc HBC chung
góc BHI= góc BEC
=>tg BHI ~ tg BCE (g.g)
=>\(\frac{BH}{BC}=\frac{BI}{BE}\) => BH.BE=BC.BI (1)
tg CHI và tg CBF có:
góc FCB chung
góc HIC= góc BFC
=> tg CHI ~ tg CBF(g.g)
=>\(\frac{CH}{CB}=\frac{CI}{CF}\) => CH.CF=BC.CI (2)
từ (1) và (2) , cộng vế theo vế, ta được
BH.BE+CH.CF=BC.BI+BC.CI
=>BH.BE+CH.CF=BC(BI+CI)
=>BH.BE+CH.CF=\(BC^2\)
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
a, Xét \(\Delta ACF\) và \(\Delta ABE\) có:
\(\widehat{AFC}=\widehat{AEB}=90^0\)
\(\widehat{BAC}\) là góc chung
\(\Rightarrow\Delta ACF~\Delta ABE\left(g.g\right)\)
\(\Rightarrow\frac{AC}{AB}=\frac{AF}{AE}\)
\(\Rightarrow AC.AE=AB.AF\)
Xét \(\Delta AEF\) và \(\Delta ABC\) có:
\(\widehat{CAB}\) là góc chung
\(\frac{AE}{AB}=\frac{AF}{AC}\)
\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)
b, Xét \(\Delta BDH\) và \(\Delta BEC\) có:
\(\widehat{EBC}\) là góc chung
\(\widehat{BEC}=\widehat{BDH}=90^0\)
\(\Rightarrow\Delta BDH~\Delta BEC\left(g.g\right)\)
\(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}\)
\(\Rightarrow BE.BH=BC.BD\left(1\right)\)
Tương tự như trên ta được: \(\Delta CDH~\Delta CFB\left(g.g\right)\)
\(\Rightarrow\frac{CH}{CB}=\frac{CD}{CF}\)
\(\Rightarrow CF.CH=CD.CB\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BE.BH+CH.CF=BD.BC+BC.CD=BC\left(BD.CD\right)=BC^2\)
\(\Rightarrow BH.BE+CH.CF=BC^2\)
d,EI _|_ AB ; CE _|_ AB => EI // CE => AI/IF = AE/EC (đl)
EK _|_ AD; CD _|_ AD => EK // CD => AK/KD = AE/EC (đl)
=> AI/IF = AK/KD; xét tam giac AFD
=> IK // FD (1)
ER _|_ BC; AD _|_ BC => ER // AD => CR/RD = CE/EA (đl)
EQ _|_ CF; AF _|_ CF => AH // AF => CH/FH = CE/AE (đl)
=> CR/RD = CH/FH; xét tam giác CFD
=> HR // FD (2)
EK _|_ AD; AD _|_ BD => EK // BD => KH/HD = EH/HB (đl)
EH _|_ CF; CF _|_ BF => EH // FB => EH/HB = QH/HF (đl)
=> KH/HD = QH/HF
=> KH // ED (3)
(1)(2)(3) => I;K;H;R thẳng hàng (tiên đề Ơclit)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
b: Ta có: ΔAEB\(\sim\)ΔAFC
nên AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
\(\widehat{EAF}\) chung
DO đó: ΔAEF\(\sim\)ΔABC
a)cm tam giác AFC đồng dạng tam giác AEB(gg)
=> tam giác AFE đồng dạng ACB(cgc) . từ đó suy ra đpcm
b) tam giác BDH đồng dạng tam giác BEC (gg)
=> BH/BC =BD/BE hay BH .BE =BD.BC (1)
t^2 CH.CF=DC.BC (2)
lấy (1)+(2) theo vế suy ra đpcm
c)tam giác AFE đd tam giác ACB ( câu a) => góc AEF = góc C
t^2 tam giác DEC đd tam giác ABC => góc DEC= góc C
Do đó góc AEF= góc DEC
mà góc AEF+góc FEB=90 ; góc DEC+BED =90
=> góc FEB= góc BED
suy ra đpcm ................... (x-x)
a, Xét tgABE và tgACF có:
góc AEB = góc CFA = 90o
góc BAC chung
Từ 2 điều trên => tgABE đồng dạng tgACF (g.g)
=> AB/AC = AE/AF (các cặp cạnh tương ứng)
=> AB.AF = AC.AE
ABCFEHK
a) Xét \(\bigtriangleup\) AFC và \(\bigtriangleup\) AEB có:
\(\widehat{BAC}\) chung
\(\widehat{AFC}=\widehat{AEB}\) =90o
\(\Rightarrow\) \(\bigtriangleup\)AFC đồng dạng với \(\bigtriangleup\) AEB(g.g)
\(\Rightarrow\) \(\dfrac{AF}{AE}=\dfrac{AC}{AB}\)
\(\Rightarrow\) \(AB.AF=AE.AC\)
b)\(\dfrac{AF}{AE}=\dfrac{AC}{AB}\) \(\Rightarrow\) \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)
Xét \(\bigtriangleup\) AEF và \(\bigtriangleup\) ABC có:
\(\widehat{BAC}\) chung
\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)
\(\Rightarrow\) \(\bigtriangleup\) AEF đồng dạng với \(\bigtriangleup\) ABC(c.g.c)
c) Từ H vẽ HK\(\perp\)BC
Xét \(\bigtriangleup\) BKH và \(\bigtriangleup\) BEC có:
\(\widehat{HBC}\) chung
\(\widehat{BKH}=\widehat{BEC}\) =90o
\(\Rightarrow\) \(\bigtriangleup\)BKH đồng dạng với \(\bigtriangleup\)BEC (g.g)
\(\Rightarrow\) \(\dfrac{BK}{BE}=\dfrac{BH}{BC}\)
\(\Rightarrow\) BH.BE=BK.BC(1)
Xét \(\bigtriangleup\) CKH và \(\bigtriangleup\) CFB có:
\(\widehat{BCH}\) chung
\(\widehat{CKH}=\widehat{CFB}\) =90o
\(\Rightarrow\) \(\bigtriangleup\) CKH đồng dạng với \(\bigtriangleup\) CFB(g.g)
\(\Rightarrow\) \(\dfrac{CK}{CF}=\dfrac{CH}{BC}\)
\(\Rightarrow\) CH.CF=BC.CK(2)
Cộng (1) với (2) ta được:
BH.BE+CH.CF=BK.BC+CK.BC=BC.(CK+BK)=BC.BC=BC2
\(\Rightarrow\) BH.BE+CH.CF=BC2
Chúc bạn học tốt.