Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ IK,IH,IE lần lượt vuông góc BC,AB,AC
Xét ΔBHI vuông tại H và ΔBKI vuông tại K có
BI chung
góc HBI=góc KBI
=>ΔBHI=ΔBKI
=>IH=IK
Xét ΔCKI vuông tại K và ΔCEI vuông tại E có
CI chung
góc KCI=góc ECI
=>ΔCKI=ΔCEI
=>IK=IE
=>IH=IE
Xét ΔAHI vuông tại H và ΔAEI vuông tại E có
AI chung
IH=IE
=>ΔAHI=ΔAEI
=>góc HAI=góc EAI
=>AI là phân giác của góc BAC
Bạn đổi điểm K thành điểm M là xong nha
Kẻ IG,IK,IH lần lượt vuông góc với AB,BC,AC
Kẻ MO,MD,ME lần lượt vuông góc với AB,BC,AC
Xét ΔBKI vuông tại K và ΔBGI vuông tại G có
BI chung
góc KBI=góc GBI
Do đó: ΔBKI=ΔBGI
Suy ra: IK=IG(1)
Xét ΔCKI vuông tại K và ΔCHI vuông tại H có
CI chung
góc KCI=góc HCI
Do dó: ΔCKI=ΔCHI
Suy ra: IK=IH(2)
Từ (1) và (2) suy ra IG=IH
mà I nằm trong ΔABC và IG,IH là các đường cao ứng với các cạnh AB,AC
nên AI là phân giác của góc BAC(3)
Xét ΔBOM vuông tại O và ΔBDM vuông tại D có
BM chung
góc OBM=góc DBM
Do đó: ΔBOM=ΔBDM
Suy ra: MO=MD(4)
Xét ΔMDC vuông tại D và ΔMEC vuông tại E có
CM chung
góc DCM=góc ECM
Do đó: ΔMDC=ΔMEC
Suy ra: MD=ME(5)
Từ (4) và (5) suy ra MO=ME
mà M nằm ngoài ΔABC và MO,ME là các đường cao ứng với các cạnh AB,AC
nên AM là phân giác của góc BAC(6)
Từ (3) và (6) suy ra A,I,M thẳng hàng
Xét tam giác ABC vuông tại A:
BI; IC là đường phân giác (gt).
BI cắt CI tại I (gt).
\(\Rightarrow\) AI là tia phân giác góc BAC.
Tam giác ABC có BI; CI là các đường phân giác giao nhau tại I
=> I là tâm đường tròn ngoại tiếp
=> AI là phân giác
Xét tam giác ABC có:
IB là phân giác `hat{B}`
IC là phân giác `hat{C}`
`=>` I là giao điểm 2 đường pg.
`=>` AI là phân giác `hat{A}`
Kẻ KD vuông góc AB, KE vuông góc BC, KF vuông góc AC
Xét ΔADK vuông tại D và ΔAFK vuông tại F có
AK chug
góc DAK=góc FAK
=>ΔADK=ΔAFK
=>KD=KF
Xét ΔCFK vuông tại F và ΔCEK vuông tại E có
CK chung
góc FCK=góc ECK
=>ΔCFK=ΔCEK
=>FK=EK=DK
=>K nằm trên tia phân giác của góc ABC
=>BK là phân giác của góc ABC
Kẻ IH ⊥ AB, IJ ⊥ BC, IG ⊥ AC, KD ⊥ AB, KE ⊥ AC, KF ⊥ BC
Vì I nằm trên tia phân giác của ∠(BAC) nên IH = IG (tính chất tia phân giác)
Vì I nằm trên tia phân giác của ∠(BCA) nên IJ = IG (tính chất tia phân giác)
Suy ra: IH = IJ
Do đó I nằm trên tia phân giác của ∠(ABC) (1)
Vì K nằm trên tia phân giác của ∠(DAC) nên KD = KE (tính chất tia phân giác)
Vì K nằm trên tia phân giác của ∠(ACF) nên KE = KF (tính chất tia phân giác)
Suy ra: KD = KF
Do đó K nằm trên tia phân giác của ∠(ABC) (2)
Từ (1) và (2) suy ra: B, I, K thẳng hàng.