K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\)

=> \(\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

=> \(\dfrac{\left(a+b\right)^{2014}}{\left(c+d\right)^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}\)

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

=> \(\dfrac{\left(a+b\right)^{2014}}{\left(c+d\right)^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}=\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}=\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}\) (2)

Từ (1);(2) => \(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\left(\dfrac{a-b}{c-d}\right)^{2014}\)

12 tháng 8 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^{2014}=\left(\dfrac{bk+b}{dk+d}\right)^{2014}=\left[\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right]^{2014}=\left(\dfrac{b}{d}\right)^{2014}\)\(\Rightarrow\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{bk^{2014}+b^{2014}}{dk^{2014}+d^{2014}}=\dfrac{b\left(k^{2014}+b^{2013}\right)}{d\left(k^{2014}+d^{2013}\right)}\)

2 cái này thấy nó ko giống nhau lắm:v

12 tháng 8 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có:+) \(\left(\dfrac{a+b}{c+d}\right)^{2014}=\left(\dfrac{bk+b}{dk+d}\right)^{2014}=\left[\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right]^{2014}=\left(\dfrac{b}{d}\right)^{2014}\) (1)

+) \(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{\left(bk\right)^{2014}+b^{2014}}{\left(dk\right)^{2014}+d^{2014}}=\dfrac{b^{2014}.k^{2014}+b^{2014}}{d^{2014}.k^{2014}+d^{2014}}\)

\(=\dfrac{b^{2014}.\left(k^{2014}+1\right)}{d^{2014}.\left(k^{2014}+1\right)}=\dfrac{b^{2014}}{d^{2014}}=\left(\dfrac{b}{d}\right)^{2014}\) (2)

Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^{2014}=\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}\) => đpcm

16 tháng 10 2017

4.a

\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)

17 tháng 10 2017

Thanks

1 tháng 11 2017

\(\dfrac{a}{b}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;c=dk\\ \dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{\left(bk\right)^{2014}+b^{2014}}{\left(dk\right)^{2014}+d^{2014}}=\dfrac{b^{2014}\left(k^{2014}+1\right)}{d^{2014}\left(k^{2014}+1\right)}=\dfrac{b^{2014}}{d^{2014}}\\ \left(\dfrac{a-b}{c-d}\right)^{2014}=\left(\dfrac{bk-b}{dk-d}\right)^{2014}=\left(\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right)^{2014}=\left(\dfrac{b}{d}\right)^{2014}=\dfrac{b^{2014}}{d^{2014}}\\ \RightarrowĐPCM\)

31 tháng 3 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)

Xét \(VT=\left(\dfrac{a-b}{c-d}\right)^{2014}=\left(\dfrac{bk-b}{dk-d}\right)^{2014}=\left(\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right)^{2014}=\left(\dfrac{b}{d}\right)^{2014}\left(1\right)\)

Xét \(VP=\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{b^{2014}k^{2014}+b^{2014}}{d^{2014}k^{2014}+d^{2014}}=\dfrac{b^{2014}\left(k^{2014}+1\right)}{d^{2014}\left(k^{2014}+1\right)}=\dfrac{b^{2014}}{d^{2014}}=\left(\dfrac{b}{d}\right)^{2014}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) ta có ĐPCM

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)

Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

b: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

DO đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

3 tháng 11 2018

\(a,\)

Xét \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

\(ad=bc\left(gt\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

\(b,\)

\(\dfrac{a}{b}=\dfrac{c}{d}\) (Chứng minh câu a)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a+c}{b+d}=\dfrac{a}{b}\)

\(c,\)

Xét \(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow ad=bc\)

\(ad=bc\left(gt\right)\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(d,\)

\(\dfrac{a}{c}=\dfrac{b}{d}\) (Chứng minh câu c)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

\(e,\)

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2a+b}{2c+d}\)

\(\Rightarrow\dfrac{2a+b}{2c+d}=\dfrac{a}{c}\)

23 tháng 5 2017

Đặt : \(\dfrac{a}{b}=\dfrac{c}{d}=k\) (k khác 0)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Khi đó:

+)\(\left(\dfrac{a-b}{c-d}\right)^{2014}=\left(\dfrac{bk-b}{dk-d}\right)^{2014}=\)

\(=\left(\dfrac{b.\left(k-1\right)}{d.\left(k-1\right)}\right)^{2014}=\left(\dfrac{b}{d}\right)^{2014}\) (1)

+)\(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{\left(bk\right)^{2014}+b^{2014}}{\left(dk\right)^{2014}+d^{2014}}=\)

\(=\dfrac{b^{2014}.\left(k^{2014}+1\right)}{d^{2014}.\left(k^{2014}+1\right)}=\dfrac{b^{2014}}{d^{2014}}=\left(\dfrac{b}{d}\right)^{2014}\) (2)

Từ (1) và (2) suy ra

(đ.p.c.m)

23 tháng 5 2017

Tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) có thể viết \(\dfrac{a}{c}=\dfrac{b}{d}\). Theo tính chất của dãy tỉ số bằng nhau ta có: \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\) hay nâng lên lũy thừa 2014:

\(\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}\)

Áp dụng lần nữa tính chất của tỉ số bằng nhau sẽ được:

\(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}\)

2 tháng 3 2017

Theo bài ra:

\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b};a\ne b\ne c;a,b,c\ne0\)

\(P=\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+a+c+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

\(hay:\dfrac{a}{b+c}=\dfrac{1}{2}\Rightarrow a=\dfrac{b+c}{2}\)

Thay \(a=\dfrac{b+c}{2}\) vào \(P\), ta có:

\(P=\dfrac{b+c}{\dfrac{b+c}{2}}+\dfrac{b+c+c}{b}+\dfrac{b+c+b}{c}\\ P=\dfrac{2\left(b+c\right)}{b+c}+\dfrac{2c+b}{b}+\dfrac{2b+c}{c}\\ P=2+\dfrac{2c}{b}+\dfrac{b}{b}+\dfrac{2b}{c}+\dfrac{c}{c}\\ P=2+\dfrac{2c}{b}+1+\dfrac{2b}{c}+1\\ P=\left(2+1+1\right)+\dfrac{2c}{b}+\dfrac{2b}{c}\\ P=4+\dfrac{2c}{b}+\dfrac{2b}{c}\\ P=4+\dfrac{2c+2b}{b+c}\\ P=4+\dfrac{2\left(b+c\right)}{b+c}\\ P=4+2\\ P=6\)

Vậy: \(P=6\)