K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

B A E C D Kẻ DE⊥ BC

Xét △ABC và △BDE có: Â=Ê=90*

∠ABD=∠DBE (BD phân giác ∠B)

BD: cạnh chung

⇒ △ABC = △BDE ( cạnh huyền-góc nhọn)

⇒ AD=DE ( 2 cạnh tương ứng)

Xét △EDC có: Ê=90*

⇒ Ê>∠C (theo nhận xét)

⇒ DC>DE (theo quan hệ góc,cạnh đối diện trong tam giác)

mà AD=DE ⇒DC>AD (đpcm)

15 tháng 3 2018

\(\Delta ABD=\Delta BDEchứ\)

7 tháng 8 2018

Kẻ DH ⊥ BC.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xét hai tam giác vuông ABD và HBD, ta có:

∠B1 = ∠B2 ( vì BD là tia phân giác của góc ABC).

Cạnh huyền BD chung

∠BAD = ∠BHD = 90º

Suy ra: ΔABD = ΔHBD (cạnh huyền, góc nhọn)

⇒ AD = HD (2 cạnh tương ứng) (1)

Trong tam giác vuông DHC có ∠DHC = 90o

⇒ DH < DC (cạnh góc vuông nhỏ hơn cạnh huyền) (2)

Từ (1) và (2) suy ra: AD < DC

26 tháng 3 2022

a) Xét 2 tam giac vuông tam giác ABD và tam giác EBD
ta có BD là cạnh chung
         ABD=EBD(gt)
Do đó tam giác ABD= tam giác EBD(cạnh huyền góc nhọn)

13 tháng 3 2018

A B C D

Xét hai tam giác vuông DBA và DHB có:

BD là cạnh chung

\(\widehat{ABD}=\widehat{DHB}\)( BD là tia phân giác )

\(\Rightarrow\Delta DBA=\Delta DBH\left(ch-gn\right)\)

\(\Rightarrow AB=DH\)( 2 cạnh bằng nhau )

Tam giác vuông DHC có: 

DC là canh huyền suy ra DC là cạnh lớn nhất

\(\Rightarrow DC>DH\)

Mà DH = AD nên AD < DC

18 tháng 2 2020

*Đảm bảo đúng 100% nhé!! 😊*

Giải:

Dựng DH vuông góc BC (H thuộc BC)

Xét hai tam giác vuông ABD và HBD có:

Góc A = Góc H (=90°)

BD: cạnh chung

Góc ABD = Góc HBD

=> Tam giác ABD = Tam giác HBD (cạnh huyền- góc nhọn)

=> AD = DH (2 cạnh tương ứng)

Xét tam giác vuông DHC vuông tại H có DC là cạnh huyền => DC là cạnh lớn nhất trong tam giác DHC

Do đó: AD = DH > DC (đpcm)

10 tháng 6 2017

B1:  Trên đoạn BC lấy điểm E sao cho E là chân đường cao lên điểm D.

Ta chứng minh tam giác ABD = tam giác EBD ( ch - gn)  

=> AD = ED

Xét tam giác DEC vuông tại E có DC là cạnh huyền và DE là cạnh góc vuông

=> DC > DE

Mà DE = AD

Nên AD < DC (đpcm)

Câu B:

Xét hai tam giác vuông ABD và HBD, ta có:

∠B1 = ∠B2 ( vì BD là tia phân giác của góc ABC).

Cạnh huyền BD chung

∠BAD = ∠BHD = 90º

Suy ra: ΔABD = ΔHBD (cạnh huyền, góc nhọn)

⇒ AD = HD (2 cạnh tương ứng) (1)

Trong tam giác vuông DHC có ∠DHC = 90o

⇒ DH < DC (cạnh góc vuông nhỏ hơn cạnh huyền) (2)

Từ (1) và (2) suy ra: AD < DC

22 tháng 2 2022

cảm ơn nhma có thể vẽ hình đc k câu a nx ạ

19 tháng 2 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Lời giải:

Trên cạnh AC lấy điểm E sao cho AE = AB.

Ta có: AB < AC nên AE < AC

Suy ra E nằm giữa A và C.

Xét ΔABD và ΔAED, ta có:

AB = AE (theo cách vẽ)

∠(BAD) = ∠(EAD) (gt)

AD cạnh chung

Suy ra: ΔABD = ΔAED (c.g.c)

Suy ra: BD = DE (2 cạnh tương ứng)

và ∠(ABD) = ∠(AED) (2 góc tương ứng)

Mà: ∠(ABD) + ∠B1= 180o (2 góc kề bù)

∠(AED) + ∠E1= 180o (2 góc kề bù)

Suy ra: ∠B1= ∠E1

Trong ΔABC ta có ∠B1là góc ngoài tại đỉnh B

Ta có: ∠B1 > ∠C (tính chất góc ngoài của tam giác)

Suy ra: ∠E1> ∠C

Suy ra: DC > DE (đối diện góc lớn hơn là cạnh lớn hơn)

Vậy BD < DC.

Trên cạnh AC lấy điểm E sao cho AE = AB

AB < AC nên AE < AC => E nằm giữa A và C

Xét ∆ABD và ∆AED:

 AB = AE (theo cách vẽ)      

\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)

AD cạnh chung

Do đó: ∆ABD = ∆AED (c.g.c)

=> BD = DE (2 cạnh tương ứng)

\(\Rightarrow\widehat{ABD}=\widehat{AED}\)(2 góc tương ứng)

\(\widehat{ABD}+\widehat{B_1}=180^0\)(2 góc kề bù)

\(\widehat{AED}+\widehat{E1}=180^0​\)(2 góc kề bù)

\(\Rightarrow\widehat{B_1}=\widehat{E_1}\)

Trong ∆ABC ta có\(\widehat{B_1}\)là góc ngoài tại đỉnh B.

\(\Rightarrow\widehat{B_1}>\widehat{C}\)(tính chất góc ngoài tam giác)

\(\Rightarrow\widehat{E_1}>\widehat{C}\)

Trong ∆DEC ta có:\(\widehat{E_1}>\widehat{C}\)

=>DC > DE  (đối diện góc lớn hơn là cạnh lớn hơn)

Suy ra: BD < DC

2 tháng 11 2017

Chọn B