K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.3/ Cho tam giác nhọn ABC. H là trực tâm:CMR: a) HA+HB+HC<AB+AC           b)...
Đọc tiếp

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.

2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.

3/ Cho tam giác nhọn ABC. H là trực tâm:

CMR: a) HA+HB+HC<AB+AC

           b) HA+HB+HC<\(\frac{2}{3}\)(AB+BC+CA)

4/ Cho \(\Delta ABC\) vuông tại A. Gọi I là giao điểm của các đường phân giác ABC. Vẽ \(ID\perp AB\) tại D. CMR AB+AC-BC=2ID

5/ Cho \(\Delta ABC\) vuông tại A. AH là đường cao. Gọi I,K,S lần lượt là giao điểm các đường phân giác của \(\Delta ABC\)\(\Delta ABH\)\(\Delta ACH\). Vẽ \(II'\perp BC\) tại I', \(KK'\perp BC\) tại K', \(SS'\perp BC\) tại S'. CMR: SS'+II'+KK'=HA

0
12 tháng 12 2016

AI GIÚP MÌNH VỚI! khocroi

15 tháng 12 2016

MÌNH NHẦM

CÂU a LÀ CHỨNG MINH TAM GIÁC EIB=AIE

3 tháng 4 2019

bam bo ây

14 tháng 1 2018

a ) Xét \(\Delta ABD\)và \(\Delta ACE\) có : \(BD=CE\left(gt\right);\hept{\begin{cases}\widehat{B}=\widehat{C}\\AB=AC\end{cases}\left(gt\right)}\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(cgc\right)\)

Xét \(\Delta BKE\)và \(\Delta CHD\) có : \(\widehat{B}=\widehat{C}\left(gt\right);\widehat{BKE}=\widehat{CHD}=90^0\left(gt\right);BE=DC\left(=BD+DE=EC+DE\right)\)

\(\Rightarrow\Delta BKE=\Delta CHD\)(CH-GN) \(\Rightarrow DH=EK\)

b) Theo a  \(\Delta BKE\)\(\Delta CHD\) \(\Rightarrow\widehat{KEB}=\widehat{HDC}\Rightarrow\Delta ODE\) cân tại O

c ) Có tam giác ODE cân tại O \(\Rightarrow OD=OE\)

\(DH=OD+OH;EK=OE+OK\) Mà HD = KE (cmt) ; OD = OE (cmt)=> OK = OH 

=> O nằm trên đường chung trực của HK

 \(\Delta BKE\)\(\Delta CHD\)  theo a nên BK = HC ; Mà AB = AC (gt) => AK = AH => A nằm trên đường chung trực của HK

=> AO là đường trung trực của tam giác cân AHK => AO là đừng phân giác của \(\widehat{BAC}\)

27 tháng 1 2019

hình vẽ và GT KL

21 tháng 12 2016

a) Ta có AE = AB + BE

AC = AD + DC

mà AB = AD (gt)

BE = DC (gt)

=> AE = AC

Xét 2 tam giác ABC và tam giác ADE có :

AB = AD (gt)

AE = AC (cmt)

A là góc chung

=> tam giác ABC = tam giác ADE (c-g-c)

b) Ta có : góc B1 + góc B2 = 180 độ

góc D1 + góc D2 = 180 độ

mà góc B1 = góc D1 (vì tam giác ABC = tam giác ADE)

=>góc B2 = góc D2

Xét 2 tam giác BOE và tam giác DOC có :

góc B2 = góc D2 (cmt)

góc E = góc C (vì tam giác ABC = tam giác ADE )

BE = DC (gt)

=> tam giác BOE = tam giác DOC (g-c-g)

c)Xét 2 tam giác ABO và tam giác ADO có:

AO là cạnh chung

AB = AD (gt)

BO = DO (vì tam giác BOE = tam giác DOC)

=>tam giác ABO = tam giác ADO (c-c-c)

=> góc A1 = góc A2 (2 góc tương ứng)

=> AO là tia phân giác của góc xAy

d) Xét 2 tam giác ABH và tam giác ADH có:

AH là cạnh chung

AB = AD (gt)

góc A1 = góc A2 (cm ở câu c)

=> tam giác ABH =tam giác ADH (c-g-c)

=> góc H1 = góc H2 (2 góc tương ứng)

mà góc H1 + góc H2 = 180 độ

=> góc H1 = góc H2 = 180/2= 90 độ

=> AH vuông góc với BD

Bạn vẽ x và y vào hình nhé, mình quên kí hiệu vào hình!

 

 

 

 

 

 

 

 

 

 

 

 

 

21 tháng 12 2016

A B E D C H O 1 2 1 2 1 2 1 2