K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2021

\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{299}+3^{300}\right)\\ S=\left(1+3\right)\left(1+3^2+...+3^{299}\right)\\ S=4\left(1+3^2+...+3^{299}\right)⋮4\)

8 tháng 12 2021

mơn mà như vậy là chx đủ đâu

 

18 tháng 12 2021

gải giúp mình với

6 tháng 1 2018

a,S=1+3+32+...+360

3S=3+32+33+...+361

3S-S=(3+32+33+...+361)-(1+3+32+...+360)

2S = 361 - 1

b,2S+1=361-1+1=361 = 3x-3

=>x-3=61=>x=64

c, S=1+3+32+...+360

=(1+3)+(32+33)+...+(359+360)

=4+32(1+3)+...+359(1+3)

=4+32.4+...+359.4

=4(1+32+...+359) chia hết cho 4

S=1+3+32+...+360

=(1+3+32)+....+(358+359+360)

=13+...+358(1+3+32)

=13+...+358.13

=13(1+...+358)

6 tháng 1 2018

còn S chia hết cho 10

21 tháng 6 2019

#)Giải :

\(S=3+3^2+3^3+...+3^{2019}\)

\(\Rightarrow3S=3^2+3^3+3^4+...+3^{2020}\)

\(\Rightarrow3S-S=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+...+3^{2019}\right)\)

\(\Rightarrow2S=3^{2020}-3\)

\(\Rightarrow S=\frac{3^{2020}-3}{2}\)

21 tháng 6 2019

từng số hạng của tổng S chia hết cho 3 nên tổng S chia hết cho 3

21 tháng 6 2019

#)Giải :

\(S=3+3^2+3^3+...+3^{2019}\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)

\(S=3\left(1+3+9\right)+3^2\left(1+3+9\right)+...+3^{2017}\left(1+3+9\right)\)

\(S=13\left(3+3^3+...+3^{2017}\right)\)chia hết cho 3 ( đpcm )

s = 3^1 +3^2 + 3^3 +....+ 3^2017 + 3^2018 + 3^2019

= ( 3^1 +3^2 + 3^3) +...+ ( 3^2017 + 3^2018 + 3^2019 )  (  2019 : 3 =673 # chia hết nên có thể ghép cặp như vậy)

= 3( 1+ 3 +3^2 )+ 3^4(  1+ 3 +3^2)+...+ 3^2017( 1+ 3 +3^2) ( háp dụng tính chất phân phối)

= 13( 3+ 3^4+....+3^2017) => chia hết cho 13

học tốt

26 tháng 9 2019

a, \(S=3^0+3^2+3^4+3^6+...+3^{2020}\)

\(\Leftrightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2022}\)

\(\Leftrightarrow3^2S-S=3^{2022}-3^0\)

\(\Leftrightarrow9S-S=3^{2022}-1\)

\(\Leftrightarrow8S=3^{2022}-1\Leftrightarrow S=\frac{3^{2022}-1}{8}\)

b,\(S=3^0+3^2+3^4+3^6+...+3^{2020}\)

\(=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{2016}+3^{2018}+3^{2020}\right)\)

\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+3^{2016}\left(1+3^2+3^4\right)\)

\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{2016}\right)\)

\(=91\left(1+3^6+...+3^{2016}\right)=13.7\left(1+3^6+...+3^{2016}\right)⋮7\)

=> đpcm

26 tháng 9 2019

Tham khảo :

a, S=30+32+34+36+...+32020S=30+32+34+36+...+32020

32S=32+34+36+38+...+32022⇔32S=32+34+36+38+...+32022

32SS=3202230⇔32S−S=32022−30

9SS=320221⇔9S−S=32022−1

8S=320221S=3202218⇔8S=32022−1⇔S=32022−18

b,S=30+32+34+36+...+32020S=30+32+34+36+...+32020

=(30+32+34)+(36+38+310)+...+(32016+32018+32020)=(30+32+34)+(36+38+310)+...+(32016+32018+32020)

=(1+32+34)+36(1+32+34)+...+32016(1+32+34)=(1+32+34)+36(1+32+34)+...+32016(1+32+34)

=(1+32+34)(1+36+...+32016)=(1+32+34)(1+36+...+32016)

=91(1+36+...+32016)=13.7(1+36+...+32016)7=91(1+36+...+32016)=13.7(1+36+...+32016)⋮7 (

=> (đpcm)

=>99

1 tháng 10 2017

1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)

= (5+52+..........+52003).126 ->S chia hết cho 126

2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)

= (7+...............+71997).50-> chia hết cho 5

= 7(1+72+.......+71998) -> chia hết cho 7

-> chia hết cho 35

22 tháng 2 2023

tự lực mà làm mn đừng chỉ