Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{3cy-4bz}{2x}=\dfrac{4az-2cx}{3y}=\dfrac{2bx-3ay}{4z}\)
=> \(\dfrac{3cy-4bz}{2x}.\dfrac{2x}{2x}=\dfrac{4az-2cx}{3y}.\dfrac{3y}{3y}=\dfrac{2bx-3ay}{4z}.\dfrac{4z}{4z}\)
=> \(\dfrac{6cxy-8bzx}{4x^2}=\dfrac{12azy-6cxy}{9y^2}=\dfrac{8bxz-12ayz}{16z^2}\)
Áp dụng t/c ...
\(\dfrac{6cxy-8bzx}{4x^2}=\dfrac{12azy-6cxy}{9y^2}=\dfrac{8bxz-12ayz}{16z^2}=\dfrac{6cxy-8bzx+12azy-6cxy+8bxz-12ayz}{4x^2+9y^2+16z^2}=\dfrac{0}{4x^2+9y^2+16z^2}=0\)
Ta có : 6cxy - 8bzx = 0
=> 6cxy = 8bzx
=>3cx = 4bz
=>\(\dfrac{c}{4z}=\dfrac{b}{3y}\) (1)
Ta có : 12azy - 6cxy = 0
=> 12azy = 6cxy
=> 4az = 2cx
=> \(\dfrac{a}{2x}=\dfrac{c}{4z}\) (2)
Từ (1),(2) => \(\dfrac{a}{2x}=\dfrac{b}{3y}=\dfrac{c}{4z}\) (ĐPCM)
\(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\) va \(x+y-z=69\)
Ta co: \(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\) ; \(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)
➤ \(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\) ➤ \(\dfrac{x+y-z}{20+24-21}\)
➤ \(\dfrac{69}{23}=3\) ➤ \(x=20.3=60\)
\(y=24.3=72\)
\(z=21.3=63\)
\(Vay\) \(x=60;y=72;z=63\)
\(2a=3b;5b=7c\) va \(3a+5c-7c=30\)
Ta co: \(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\)
\(5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\)
⇒ \(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\) ⇒ \(\dfrac{3a}{63}=\dfrac{5c}{50}=\dfrac{7b}{98}\) ⇒ \(\dfrac{3a+5c-7b}{63+50-98}\)
⇒ \(\dfrac{30}{15}=2\) ➤ \(3a=63.2=126\) ➤ \(a=126:3=42\)
\(5c=50.2=100\) \(c=100:5=20\)
\(7b=98.2=196\) \(b=196:7=28\)
Vay \(a=42;c=20;b=28\)
\(x\div y\div z=3\div8\div5\) va \(3x+y-2z=14\)
Ta co: \(x\div y\div z=3\div8\div5\Rightarrow\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\)
⇒ \(\dfrac{3x}{9}=\dfrac{y}{8}=\dfrac{2z}{10}\) ⇒ \(\dfrac{3x+y-2z}{9+8-10}\)
⇒ \(\dfrac{14}{7}=2\) ➤ \(3x=9.2=18\) ➤ \(x=18:3=6\)
\(y=8.2\) \(y=16\)
\(2z=10.2=20\) \(z=20:2=10\)
Vay \(x=6;y=16;z=10\)
Chuc ban hoc tot
Ta có:
\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\)
\(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\left(2\right)\)
Từ (1) và (2), suy ra: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)
Vậy \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)(đpcm)
~ Học tốt!~
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+5b}{2c+5d}\)
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a-4b}{3c-4d}\)
\(\Rightarrow\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}=\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\left(dpcm\right)\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left[{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) \(\Rightarrow\dfrac{2bk+5b}{3bk-4b}=\dfrac{2dk+5d}{3dk-4d}\)
\(VT=\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(1\right)\)
\(VP=\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) Đpcm.
b/
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
* \(\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b+c=3a\\2c+a=3b\\2a+b=3c\end{matrix}\right.\)
+)\(\Rightarrow\left\{{}\begin{matrix}c=3a-2b\\a=3b-2c\\b=3c-2a\end{matrix}\right.\)
\(\Rightarrow\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)=abc\left(1\right)\)
+) \(\Rightarrow\left\{{}\begin{matrix}2b=3c-a\\2c=3b-a\\2a=3c-b\end{matrix}\right.\)
\(\Rightarrow\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)=8abc\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{abc}{8abc}=\dfrac{1}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)