K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

Gọi d là ước nguyên tố chung của 2n+5 và 3n+7

=> \(2n+5⋮d\)

\(3n+7⋮d\)

=> \(3.\left(2n+5\right)⋮d\)

\(2.\left(3n+7\right)⋮d\)

=>\(6n+15⋮d\)

\(6n+14⋮d\)

=> (6n+15)-(6n+!4) chia hết cho d

=>1 chia hết cho d

=> d không thể là số nguyên tố

=> 2n+5 và 3n+7 không có ước nguyên tố chung

=> Q là phân số tối giản với mọi n thuộc Z

b) Để Q thuộc Z thì \(2n+5⋮3n+7\)

Ta có \(3n+7⋮3n+7\)

=> \(3.\left(2n+5\right)⋮3n+7\)

\(2.\left(3n+7\right)⋮3n+7\)

=>\(6n+15⋮3n+7\)

\(6n+14⋮3n+7\)

=> (6n+15)-(6n+14) chia hết cho 3n+7

=> 1 chia hết cho 3n+7

=> 3n+7 thuộc {-1;1}

=> với 3n+7=-1 thì n ko là số nguyên

Với 3n+7=1 thì n=-2

2 tháng 7 2015

a, Gọi UCLN(2n+1, 3n+2) là d. Ta có:

2n+1 chia hết cho d=> 6n+3 chia hết cho d

3n+2 chia hết cho d=> 6n+4 chia hết cho d

=> 6n+4 - (6n+3) chia hết cho d

=> 1 chia hết cho d

=>ƯCLN(2n+1,3n+2)=1

=>\(\frac{2n+1}{3n+2}\)tối giản(đpcm)

1 tháng 5 2019

1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)\(3n+2\)là nguyên tố cùng nhau

\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)

1 tháng 5 2019

câu 1 : 

gọi d = ƯCLN ( 2n + 1; 3n +2 )

=> 2n + 1 chia hết cho d  => 3 ( 2n +1 ) chia hết cho d

    3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d

ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4  - [ 6n + 3 ] chia hết cho d

=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau 

=> \(\frac{2n+1}{3n+2}\)  là phân số tối giản

17 tháng 7 2016

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản

17 tháng 7 2016

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản

3 tháng 4 2017

a, Gỉa sử phân số\(\dfrac{2n+5}{3n+7}\) chưa tối giản

Khi đó gọi d là một ước nguyên tố của 2n+5 và 3n+7

Ta có: 2n+5\(⋮\) d; 3n+7\(⋮\) d

\(\Rightarrow\)3(2n+5)-2(3n+7) \(⋮\) d

\(\Rightarrow\)6n+15- 6n- 14\(⋮\)d

\(\Rightarrow\)1\(⋮\) d

Mà d là số nguyên tố\(\Rightarrow\)d \(\in\)\(\varnothing\)

Vậy phân số \(\dfrac{2n+5}{3n+7}\) tối giản với mọi n\(\in\)Z

b, Để Q\(\in\)Z\(\Rightarrow\) 2n+5\(⋮\) 3n+7

\(\Rightarrow\)6n+15\(⋮\) 3n+7

\(\Rightarrow\)6n+ 14 + 1\(⋮\)3n+7

\(\Rightarrow\)2.(3n+7)+1\(⋮\)3n+7

\(\Rightarrow\)1:3n+7\(\Rightarrow\)3n+7\(\in\)Ư(1)={\(\pm\)}

+, Với 3n+7=-1

\(\Rightarrow\)3n=(-1)-7

\(\Rightarrow\)2n=-8

\(\Rightarrow\)n=-8.3\(\notin\)Z

\(\Rightarrow\)Để Q \(\in\) Z thì n=-2

Chúc bạn học tốtbanhqua

2 tháng 4 2017

Để Q là số nguyên thì

\(2n+5⋮3n+7\)

\(\Rightarrow3\left(2n+5\right)=6n+15=2\left(3n+7\right)+1⋮3n+7\)

\(2\left(3n+7\right)⋮3n+7\)

\(\Rightarrow1⋮3n+7\)

3n+7=1=>n=-2

3n+7=-1=>n=/

Vậy số nguyên để Q là số nguyên là -2

21 tháng 7 2015

goi d=UCLN(n3+2n;n4+3n2+1)          (d\(\in\)N*)

\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d

n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)\(\in\)U(1)ma d lon nhat , d\(\in\)Nnen d=1 

do đó phân số trên là tối giản

9 tháng 3 2018

giỏi lắm hoàng cảm ơn nhiều