Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.xét tứ giác AOMB có
∠AOB = ∠ AMB (góc ở tâm cùng chắn cung AB)
=> Tứ giác AOMB nội tiếp
b.vì AD//BC ⇒ ABCD là hình thang, hình thang ABCD lại nội tiếp O
⇒ ABCD là hình thang cân
mà M là giao điểm hai đường chéo
⇒ MB = MC (tính chất hình thang cân)
ΔOMB và ΔOMC có:
OB = OC = R
OM chung
MB = MC (cmt)
⇒Δ OMB =Δ OMC (c.c.c)
⇒góc MOB = góc MOC (góc tương ứng)
⇒OM là đường phân giác góc BOC hay đường phân giác góc BOC của ΔOBC
Mà ΔOBC là tam giác cân tại O (có OB = OC = R)
⇒OM là đường trung trực của tam giác cân OBC
⇒OM ⊥BC (đpcm)
c.vì OM ⊥ BC⇒OM thẳng góc AD
⇒theo tính chất dây và đường kính OM là trung trực của AD và BC
có d//AD
⇒d thẳng góc OM
vì AB cố định nên đường thẳng OM không đổi
vì đường thẳng OM không đổi mà d luôn thẳng góc OM
⇒ d đi qua một điểm cố định trên cung AB nhỏ (đpcm)
A B C D E F O I J M P Q L K T
a) Vì tứ giác BFEC nội tiếp nên \(\widehat{PFB}=\widehat{ACB}=\widehat{PBF}\) suy ra \(PF=PB\)
Suy ra \(MP\perp AB\) vì MP là trung trực của BF. Do đó \(MP||CF\). Tương tự \(MQ||BE\)
b) Dễ thấy M,I,J đều nằm trên trung trực của EF cho nên chúng thẳng hàng. Vậy IJ luôn đi qua M cố định.
c) Gọi FK cắt AD tại T ta có \(FK\perp AD\) tại T. Theo hệ thức lượng \(IE^2=IF^2=IT.IL\)
Suy ra \(\Delta TIE~\Delta EIL\). Lại dễ có \(EI\perp EM\), suy ra ITKE nội tiếp
Do vậy \(\widehat{ILE}=\widehat{IET}=\widehat{IKT}=90^0-\widehat{LIK}\). Vậy \(IK\perp EL.\)
A B C O M E D S H
Gọi S là trung điểm của đoạn OM, H là hình chiếu của S trên DE. Khi đó khoảng cách từ S đến DE là SH.
Ta sẽ chỉ ra SH = const, thật vậy: Do BM,CM là các tiếp tuyến tại B,C của (O) nên ^OBM = ^OCM (=900)
=> Tứ giác BOCM nội tiếp (OM). Ta cũng có: ^MEC = ^BAC (Vì ME // AB)
Theo tính chất góc tạo bởi tiếp tuyến và dây có ^BAC = ^MBC. Do đó ^MEC = ^MBC
=> Tứ giác MCEB nội tiếp. Tương tự, tứ giác MBDC nội tiếp
Từ đó sáu điểm B,D,O,E,C,M cùng thuộc đường tròn (OM) tâm là S => SD = SE = OM/2
Ta lại có OM2 = OC2 + CM2 = const (Vì O,C,M cố định) => SD = SE = const
Mặt khác ^DSE = 2^DME = 2^BAC = Sđ(BC = const => ^SDE = const => Sin^DSE = const
Hay \(\frac{SH}{SD}=const\). Mà SD không đổi nên SH không đổi => H cách S một khoảng không đổi
Ta thấy S cố định => (S;SH) cố định. Do DE vuông góc SH tại H nên DE luôn tiếp xúc với (S;SH) cố định (đpcm).