Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ * dựa vào tính chất đường trung tuyến ứng vs 1 cạnh = 1/2 cạnh ấy thì tam giác đó vuông ta sẽ CM đc tg BCD vuông tại C
*Có AC=AB(vì đg thẳng là tiếp tuyến của đg tròn vuông góc với bk đi qua tiếp điểm)
=>A cách đều A và B
=>AH vuông góc BC
b/Áp dụng hệ thức lượng trong tam giác vuông ABO có : OH.OA=OB^2=R^2
mk cx đg làm bài này nhg ms chỉ đến đây thôi
OABCDHEMNFK
a) Do C thuộc đường tròn mà DB là đường kính nên góc \(\widehat{BCD}\) chắn nửa đường tròn.
\(\Rightarrow\widehat{BCD}=90^o\Rightarrow BC\perp DC\)
Theo tính chất hai tiếp tuyến cắt nhau, ta có OH là phân giác góc BOC. Lại có OBC là tam giác cân tại O nên OH cũng là đường cao.
Vậy \(OH\perp BC\)
b) Xét tam giác vuông OCA có CH là đường cao nên áp dụng hệ thức lượng trong tam giác vuông, ta có: \(OH.OA=OC^2=R^2\)
Xét tam giác vuông DBA có đường cao BE nên áp dụng hệ thức lượng trong tam giác vuông, ta có:
\(DE.DA=BD^2=\left(2R\right)^2=4R^2\)
c) Xét tam giác MBA có OH và BE là các đường cao nên N là trực tâm.
Vậy thì \(MN\perp BA\)
Lại có \(BD\perp BA\) nên BD // MN.
d) Ta chứng minh \(OF\perp AD\)
Ta có \(\widehat{BCA}=\widehat{DCO}\) (Cùng phụ với góc OCB)
\(\Rightarrow\widehat{BCA}+90^o=\widehat{DCO}+90^o\Rightarrow\widehat{DCA}=\widehat{FCO}\) (1)
Ta cũng có tứ giác ABOC nội tiếp nên \(\widehat{CAO}=\widehat{CBO}\)
Mà \(\widehat{CBO}=\widehat{CDF}\) (Cùng phụ với góc CFD)
\(\Rightarrow\widehat{CAO}=\widehat{CDF}\)
Vậy thì \(\Delta CAO\sim\Delta CDF\left(g-g\right)\Rightarrow\frac{CA}{CD}=\frac{CO}{CF}\Rightarrow\frac{CA}{CO}=\frac{CD}{CF}\) (2)
Từ (1) và (2) suy ra \(\Delta DCA\sim\Delta FCO\left(c-g-c\right)\Rightarrow\widehat{ADC}=\widehat{OFC}\)
\(\Rightarrow\widehat{ADF}-\widehat{CDF}=\widehat{CFD}-\widehat{OFD}\)
\(\Rightarrow\widehat{ADF}+\widehat{OFD}=\widehat{CFD}+\widehat{CDF}=90^o\)
\(\Rightarrow\widehat{DKF}=90^o\Rightarrow OF\perp AD\)
Xét tam giác cân DOE có OK là đường cao nên đồng thời là trung tuyến. Vậy K là trung điểm DE.
Xét tam giác vuông ABD có BE là đường cao nên \(\frac{1}{BE^2}=\frac{1}{BA^2}+\frac{1}{BD^2}=\frac{1}{5R^2}+\frac{1}{4R^2}=\frac{9}{20R^2}\)
\(\Rightarrow BE^2=\frac{20R^2}{9}\)
Xét tam giác vuông BED, theo định lý Pi-ta-go ta có:
\(DE^2=BD^2-BE^2=4R^2-\frac{20R^2}{9}=\frac{16R^2}{9}\)
\(\Rightarrow DE=\frac{4R}{3}\)
\(\Rightarrow KE=\frac{2R}{3}\)
Câu hỏi của Khánh Trân Phan - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
O A B C D E H O'
a) Theo tính chất hai tiếp tuyến cắt nhau, ta có AB = AC. Lại có OB = OC nê AO là đường trung trực của BC hay \(OA\perp BC\)
Do CD là đường kính nên \(\widehat{DBC}=90^o\Rightarrow BD\perp BC\)
Từ đó suy ra AO // BD.
b) Ta thấy \(\widehat{ABE}=\widehat{ADB}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn một cung)
Vậy nên \(\Delta ABE\sim\Delta ADB\left(g-g\right)\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AE.AD=AB^2\)
Xét tam giác vuông ABO, đường cao BH, áp dụng hệ thức lượng ta có:
\(AB^2=AH.AO\)
Vậy nên \(AE.AD=AH.AO\)
c) Do \(AE.AD=AH.AO\Rightarrow\frac{AE}{AO}=\frac{AH}{AD}\)
\(\Rightarrow\Delta AEH\sim\Delta AOD\left(c-g-c\right)\Rightarrow\widehat{AHE}=\widehat{ADO}\)
Xét tam giác OED có OE = OD nên nó là tam giác cân. Vậy thì \(\widehat{ADO}=\widehat{OED}\)
Suy ra \(\widehat{AHE}=\widehat{OED}\)
d) Gọi giao điểm của AO với đường tròn (O) là O'. Ta chứng minh O' là tâm đường tròn nội tiếp tam giác ABC.
Thật vậy, nối O'C. Ta có theo tính chất hai tiếp tuyến cắt nhau thì \(\widehat{BOO'}=\widehat{O'OC}\Rightarrow\widebat{BO'}=\widebat{O'C}\Rightarrow\widehat{BCO'}=\widehat{O'CA}\)
Hay O' thuộc phân giác góc ACB. Lại có O' thuộc OA chính là phân giác góc A. Từ đó suy ra O' là giao điểm 3 đường phân giác trong tam giác ABC. Vậy thì O'H = r.
Khi đó HO = OO' - O'H = R - r
Xét tam giác BCD có O là trung điểm CD, OH // BD nên HO là đường trung bình của tam giác CBD. Vậy thì BD = 2HO = 2(R - r)
Kẻ các tiếp tuyến AM,AN với đường tròn (M,N là hai tiếp điểm) .... Cho đường tròn (O),điểm A nằm bên ngoài đường tròn,kẻ tiếp tuyến AM,AN(M,N là các tiếp .... b. vẽ đường kính BC. chứng minh rằng AC song song với MO .... Cho đường tròn (O;R), hai tiếp tuyến MA và MB của đường tròn, AB cắt OM tại H
a:Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA⊥BC