Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot21\cdot28=294\left(cm^2\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\)
mà \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)
nên \(AH\cdot BC=AB\cdot AC\)
b: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=21^2+28^2=1225\)
=>\(BC=\sqrt{1225}=35\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{15}=\dfrac{DC}{20}\)
=>\(\dfrac{DB}{3}=\dfrac{DC}{4}\)
mà DB+DC=BC=35cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{35}{7}=5\)
=>\(DB=5\cdot3=15\left(cm\right);DC=4\cdot5=20\left(cm\right)\)
\(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{21.28}{2}=294\left(cm^2\right)\)
Ta có:\(S_{ABC}=\dfrac{AB.AC}{2}\) mà ta lại có: \(S_{ABC}=\dfrac{AH.BC}{2}\)
\(\Rightarrow\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)
a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)
AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=35/7=5
=>DB=15cm; DC=20cm
b: Xét ΔCAB có DE//AB
nên DE/AB=CD/CB=CE/CA
=>CE/28=DE/21=20/35=4/7
=>CE=16cm; DE=12cm
Bài 1 :
a, Xét tam giác BDA và tam giác KDC có:
Góc BDA= Góc KDC(đối đỉnh)
Góc B= Góc K(90 độ)
=>Tam giác BDA đồng dạng với tam giác KDC(g.g)
b,
Tam giác BDA đồng dạng với tam giác KDC ( cmt) => \(\frac{DB}{DA}=\frac{DK}{DC}\)
Xét tam giác DBK và tam giác DAC có:
Góc BDK= Góc DAC(đối đỉnh)
\(\frac{DB}{DA}=\frac{DK}{DC}\)
=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)
Bài 2 :
a) Xét tam giác ABH và tam giác AHD có:
\(\widehat{A}chung\)
\(\widehat{AHB}=\widehat{ADH}=90^o\)
⇒ tam giác ABH đồng dạng với tam giác AHD (g-g)
b)T/tự: tam giác AHC đồng dạng với tam giác AEH (g-g)
⇒ \(\widehat{ACH}=\widehat{AHE}\) ( 2 góc tương ứng)
Tam giác AEH đồng dạng với tam giác HEC
\(\widehat{ACH}=\widehat{AHE}\) (CM trên)
và \(\widehat{AEH}=\widehat{HEC}\) (= 900)
⇒\(\frac{AE}{HE}=\frac{EH}{EC}\)⇒\(AE\cdot EC=EH\cdot EH=EH^2\)
c) tam giác ADC đồng dạng với tam giác ABE (g-g) vì:
\(\widehat{A}\) chung
\(\widehat{ADC}=\widehat{AEB}=90^O\)
⇒ \(\widehat{ACD}=\widehat{ABE}\) ( 2 góc tương ứng)
Xét tam giác DBM và tam giác ECM có:
\(\widehat{ACD}=\widehat{ABE}\) (CM trên)
\(\widehat{DMB}=\widehat{EMC}\) (đối đỉnh)
⇒ tam giác DBM đồng dạng với tam giác ECM (g-g)
Bài 3 :
Bạn tự vẽ hình rồi đối chiếu kq nhé, có thể có sai sót đấy, ko chắc đúng hết đâu
d, tim AH=16,8cm do tam giác ABH dồng dạng với tam giác CBA các cạnh tuong ứng tỉ lệ
tinh CD tính chất dg pg \(\frac{CD}{DB}=\frac{AC}{AB}\)
tính chat day ti so bang nhau
\(\frac{CD}{DB+CD}=\frac{AC}{AB+AC}\)
thế số vao rồi tính suy ra CD=20, BD=15
pytago trong tam giác HAC tińh CH=22,4
suy ra DH=2,4
Diện tích tam giác AHD=1/2 *AH*DH=20,16
Ban có thể tính laị so lieu
a, Xét ΔABC và ΔHBA có:
∠BAC chung, ∠BHA=∠BAC (=90o)
=> ΔABC ∼ ΔHBA (g.g)
b, Áp dụng đ/l Pitago vào △ABC ta có:
BC2=AB2+AC2 => BC=√(62+82)=10 (cm)
Ta có: SABC=\(\dfrac{1}{2}\)AB.AC=\(\dfrac{1}{2}\)AH.BC
=> 6.8=AH.10 => AH=4,8 (cm)
c, Xét △HAB và △HCA có:
∠BHA=∠CHA (=90o), ∠ABC=∠HAC (cùng phụ ∠BCA)
=> △HAB ∼ △HCA (g.g)
=> \(\dfrac{AB}{AC}=\dfrac{\text{△HAB}}{\text{△HCA}}\)=\(\dfrac{6}{8}\)=\(\dfrac{3}{4}\)
d, AD là đường p/g của △ABC => \(\dfrac{AB}{BD}=\dfrac{AC}{DC}\)=\(\dfrac{AB+AC}{BD+DC}=\dfrac{14}{10}=\dfrac{7}{5}\)
=> \(\dfrac{AB}{BD}=\dfrac{7}{5}\) => \(\dfrac{6}{BD}=\dfrac{7}{5}\) => BD=\(\dfrac{30}{7}\) (cm)
=> \(\dfrac{AC}{DC}\)\(=\dfrac{7}{5}\) => \(\dfrac{8}{DC}=\dfrac{7}{5}\) => DC=\(\dfrac{40}{7}\) (cm)