Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A\left(x\right)=3x^3+2x^2-4x+7\)
\(B\left(x\right)=-3x^3+3x^2-3x-1\)
A(x) là đa thức bậc 3
B(x) là đa thức bậc 3
b)
\(A\left(x\right)+B\left(x\right)=\left(3x^3+2x^2-4x+7\right)+\left(-3x^3+3x^2-3x-1\right)=5x^2-7x+6\)
c)
\(A\left(x\right)-B\left(x\right)=\left(3x^3+2x^2-4x+7\right)-\left(-3x^3+3x^2-3x-1\right)=6x^3-x^2-x+8\)
A(x) = x2 + 5x4 - 3x3 + x2 - 4x4 + 3x3 - x + 5
= ( 5x4 - 4x4 ) + ( 3x3 - 3x3 ) + ( x2 + x2 ) - x + 5
= x4 + 2x2 - x + 5
B(x) = x - 5x3 - x2 - x4 + 5x3 - x2 - 3x + 1
= -x4 + ( 5x3 - 5x3 ) + ( -x2 - x2 ) + ( -3x + x ) + 1
= -x4 - 2x2 - 2x + 1
M(x) = A(x) + B(x)
= x4 + 2x2 - x + 5 + ( -x4 - 2x2 - 2x + 1 )
= x4 + 2x2 - x + 5 - x4 - 2x2 - 2x + 1
= -3x + 6
N(x) = A(x) - B(x)
= x4 + 2x2 - x + 5 - ( -x4 - 2x2 - 2x + 1 )
= x4 + 2x2 - x + 5 + x4 + 2x2 + 2x - 1
= 2x4 + 4x2 + x + 4
M(x) = 0 <=> -3x + 6 = 0
<=> -3x = -6
<=> x = 2
Vậy nghiệm của M(x) là 2
a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)
\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)
\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)
\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)
\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)
\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)
\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)
\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)
\(\text{a)}P\left(x\right)=2x^2+2x-6x^2+4x^3+2-x^3\)
\(P\left(x\right)=3x^3-4x^2+2x+2\)
\(Q\left(x\right)=3-2x^4+3x+2x^4+3x^3-x\)
\(Q\left(x\right)=3x^3+2x+3\)
\(\text{b)}C\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(P\left(x\right)=3x^3-4x^2+2x+2\)
\(Q\left(x\right)=3x^3\) \(2x+3\)
\(P\left(x\right)+Q\left(x\right)=6x^3-4x^2+4x+5\)
\(\Rightarrow C\left(x\right)=6x^3-4x^2+4x+5\)
\(\text{c)}D\left(x\right)=Q\left(x\right)-P\left(x\right)\)
\(Q\left(x\right)=3x^3\) \(2x+3\)
\(P\left(x\right)=3x^3-4x^2+2x+2\)
\(Q\left(x\right)-P\left(x\right)=\) \(4x^2\) \(+1\)
\(\Rightarrow D\left(x\right)=4x^2+1\)
Để \(D\left(x\right)\)có nghiệm thì:
\(D\left(x\right)=0\)
\(\Rightarrow4x^2+1=0\)
Mà \(4x^2\ge0\)
\(\Rightarrow4x^2+1\ge1\)
\(\Rightarrow D\left(x\right)\ge1\)
\(\Rightarrow D\left(x\right)>0\)
Vậy đa thức \(D\left(x\right)\)vô nghiệm
a: \(C\left(x\right)=x^3+3x^2-x+6\)
\(D\left(x\right)=-x^3-2x^2+2x-6\)
b: Bậc của C(x) là 3
Hệ số tự do của D(x) là -6
c: \(C\left(2\right)=8+3\cdot4-2+6=20-2+6=24\)
d: \(C\left(x\right)+D\left(x\right)=x^2+x\)
a. C(x)=x^3+3x^2−x+6C(x)=x3+3x2−x+6
D(x)=−x^3−2x^2+2x−6D(x)=−x3−2x2+2x−6
b. Bậc của C(x) là 3
Hệ số tự do của D(x) là -6
c. C(2)=8+3⋅4−2+6=20−2+6=24C(2)=8+3⋅4−2+6=20−2+6=24
d. C(x)+D(x)=x2+x
a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm
a. Ta có:
f(x) = x3 - 3x2 + 2x - 5 + x2 = x3 -2x2 + 2x- 5
Bậc của đa thức f(x) là 3 (0.5 điểm)
g(x) = -x3 - 5x + 3x2 + 3x + 4 = -x3 + 3x2 - 2x + 4
Bậc của đa thức g(x) là 3 (0.5 điểm)
a/A(x)=3x3+2x2-x+7-3x
Ax)=3x3+2x2-4x+7 bậc là 3
B(x)=2x-3x3+3x2-5x-1
B(x)=-3x3+3x2-3x-1 bậc là 3
b)A(x)+b(x)=5x2-7x+6
aTa thu gọn hai đa thức sau :
A(x)=3x3+2x2-x+7-3x
=3x3+2x2-x-3x+7
=3x3+2x2-4x+7
B(x)=2x-3x3+3x2-5x-1
=2x-5x-3x3+3x2-1
=-3x-1
a,A(x)+B(x)=(3x3+2x2-4x+7)+(-3x-1)
=3x3+2x2-4x+7+(-3)x-1
=3x3+2x2-4x+(-3)x+7-1
=3x3+2x2-7x+6
b,A(x)-B(x)=(3x3+2x2-4x+7)-(-3x-1)
=3x3+2x2-4x+7+3x+1
=3x3+2x2-4x+3x+7+1
=3x3+2x2-x+8