K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2021

A=3+32+33+...+3100

3A=32+33+...+3101

3A-A=(32+33+...+3101)-(3+32+33+...+3100)

2A=3101-3

2A+3=3101

20 tháng 7 2021

\(A=3+3^2+3^3+...+3^{100}\) 

\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\) 

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\) 

\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\) 

Theo đề bài ta có  2A + 3 = 3n ( \(n\in N\) )

\(\Rightarrow2A+3=3^{101}-3+3=3^n\) 

\(\Rightarrow2A+3=3^{101}=3^n\)  

\(\Rightarrow3^{101}=3^n\) 

\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)

Vậy n = 101 

 

3 tháng 3 2017

Đây bạn

Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó :P
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.

3 tháng 3 2017

Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha hihiokthanghoavuibanh

22 tháng 3 2017

a, Ta có: \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{81}\right)^7=\left(\dfrac{1}{3^4}\right)^7=\left(\dfrac{1}{3}\right)^{28}=\dfrac{1}{3^{28}}\)

\(\left(\dfrac{1}{243}\right)^6=\left(\dfrac{1}{3^5}\right)^6=\left(\dfrac{1}{3}\right)^{30}=\dfrac{1}{3^{30}}\)

\(\dfrac{1}{3^{28}}>\dfrac{!}{3^{30}}\Rightarrow\left(\dfrac{1}{81}\right)^7>\left(\dfrac{1}{243}\right)^6\Rightarrow\) \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)

b, Ta có: \(\left(\dfrac{3}{8}\right)^5=\dfrac{3^5}{\left(2^3\right)^5}=\dfrac{243}{2^{15}}>\dfrac{243}{3^{15}}>\dfrac{125}{3^{15}}=\dfrac{5^3}{\left(3^5\right)^3}=\left(\dfrac{5}{243}\right)^3\)

\(\Rightarrow\left(\dfrac{3}{8}\right)^5>\left(\dfrac{5}{243}\right)^3\)

22 tháng 3 2017

tội bạn hè

16 tháng 4 2017

\(\left(x-y^2+z\right)^2\ge0\)

\(\left(y-2\right)^2\ge0\)

\(\left(z-3\right)^2\ge0\)

\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)

\(\Rightarrow\) \(\left(x-y^2+z\right)^2=0;\text{ }\left(y-2\right)^2=0;\text{ }\left(z-3\right)^2=0\)

+\(\text{ }\left(y-2\right)^2=0\)

\(\Rightarrow\text{ }y-2=0\)

\(y=0+2\)

\(y=2\)

+ \(\left(z-3\right)^2=0\)

\(\Rightarrow z-3=0\)

\(z=0+3\)

\(z=3\)

+ \(\left(x-y^2+z\right)^2=0\)

\(\Rightarrow x-y^2+z=0\)

\(x-2^2+3=0\)

\(x-4=0-3\)

\(x-4=-3\)

\(x=-3+4\)

\(x=1\)

Vậy: \(x=1;\text{ }y=2;\text{ }z=3\)

10 tháng 11 2017

100:{250:[450-(4.53-32.25)]}

=100:{250:[450-(4.125-9.25)]}

=100;{250:[450-(500-225)]}

=100:{250:[450-275]

=100:{250:175}

=100:10/7

=70

10 tháng 11 2017

\(100:\left\{250:\left[450-\left(4.5^3-3^2.25\right)\right]\right\}\)

\(=100:\left[250:175\right]\)

\(=100:\dfrac{10}{7}\)

\(=70\)

10 tháng 11 2017

a) \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(4.125-4.25\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)

\(=100:\left[250:\left(450-400\right)\right]\)

\(=100:\left(250:50\right)\)

\(=100:5\)

\(=20\)

b) \(109.5^2-3^2.25\)

\(=109.25-9.25\)

\(=25\left(109-9\right)\)

\(=25.100\)

\(=2500\)

c) \(\left[5^2.6-20.\left(37-2^5\right)\right]:10-20\)

\(=\left[5^2.6-20.\left(37-32\right)\right]:10-20\)

\(=\left(5^2.6-20.5\right):10-20\)

\(=\left(25.6-20.5\right):10-20\)

\(=\left(150-100\right):10-20\)

\(=50:10-20\)

\(=5-20\)

\(=-15\)

10 tháng 11 2017

a) \(100:\left\{250:\left[450-\left(4.5^3-25.4\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(4.125-25.4\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)

\(=100:\left[250:\left(450-400\right)\right]\)

\(=100:\left(250:50\right)\)

\(=100:5\)

\(=20\)

b) \(4\left(18-15\right)-\left(5-3\right).3^2\)

\(=4.3-2.3^2\)

\(=4.3-2.9\)

\(=12-18\)

\(=-6\)

10 tháng 11 2017

100:{250:[450-(4.53 -25.4)]}

=100:{250:[450-(4.125-25.4)]}

=100:{250:[450-(500-100)]}

=100:{250:[450-400]}

=100:{250:50}

=100:5

=20

b)4.(18-15)-(5-3).32

=4.(18-15)-(5-3).9

=4.3-2.9

=12-18

=(-6)

=4.

7 tháng 11 2017

\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)

Vậy \(\left(3n\right)^{100}⋮81\)

Chúc em học tốt!vui

7 tháng 11 2017

Cảm ơn cj nhìu nhìu lắm!!!hihingaingung

15 tháng 7 2017

Bài 1 là tính hợp lí

2 tháng 2 2018

mình giúp bài tìm x nhé

(x - 1)^5 = (x - 1)^4

(x - 1)^5 : (x - 1)^4 = 1

x - 1=1

x = 2

thế nhé. Good luck. ^_^

17 tháng 9 2017

\(\left(2^3+2\right).n+3^2.n+20=3.5^2\)

\(\left(8+2\right).n+9.n+20=3.25\)

\(10n+9n+20=75\)

\(19n=75-20\)

\(19n=55\)

\(n=55:19=\dfrac{55}{19}\)

Vậy \(n=\dfrac{55}{19}\)

17 tháng 9 2017

Giải:

\(\left(2^3+2\right).n+3^2.n+20=3.5^2\)

\(\Leftrightarrow n\left(2^3+2+3^2\right)+20=3.5^2\)

\(\Leftrightarrow n\left(8+2+9\right)+20=75\)

\(\Leftrightarrow19n+20=75\)

\(\Leftrightarrow19n=75-20\)

\(\Leftrightarrow19n=55\)

\(\Leftrightarrow n=\dfrac{55}{19}\)

Vậy \(n=\dfrac{55}{19}\).

Chúc bạn học tốt!