Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ bn nha a) ta có:tam giác abc vuông tại a => bac = 90 xét tam giác abc có: abc + acb + cab = 180(t/c) mà bac = 90(cmt) ; acb = 36(gt) => 90 +36 + abc = 180 126 + abc = 180 abc= 54
b) ta có: abd = ebd ( vì bd là phân giác của abc) xét tam giác abd và tam giác ebd có: ba=be(gt) ; abd=ebd(cmt) : chung cạnh bd => tam giác abd = tam giác ebd ( c.g.c) (đpcm)
c) ta có: xy vuông góc với ab(gt) => tam giác abk vuông tại b tam giác abc vuông tại a(gt) => ab vuông góc với ac ta có: xy vuông góc với ab (gt) ab vuông góc với ac(cmt) => xy song song với ac(t/c) => bak = abd ( so le trong) xét tam giác abk vuông tại b và tam giác bad vuông tại a có: bak=abd(cmt) ; chung cạnh ba => tam giác abk= tam giác abd ( cgv-gnk) => ak=bd(2 cạnh tương ứng)
Tam giác ABC vuông tại A có:
ABC + ACB = 900
ABC + 400 = 900
ABC = 900 - 400
ABC = 500
Xét tam giác ABD và tam giác EBD có:
AB = EB (gt)
ABD = EBD (BD là tia phân giác của ABE)
BD chung
=> Tam giác ABD = Tam giác EBD (c.g.c)
Xét tam giác AKB và tam giác BDA có:
KAB = DBA (2 góc so le trong, AK // BD)
AB chung
ABK = BAD (= 900)
=> Tam giác AKB = Tam giác BDA (g.c.g)
=> AK = BD (2 cạnh tương ứng)
BAD = BED (Tam giác ABD = Tam giác EBD)
mà BAD = 900 (tam giác ABC vuông tại A)
=> BED = 900
=> DE _I_ BC
Tam giác FBC có: CA là đường cao (CA _I_ BF)
BH là đường cao (BH _I_ FC)
mà CA cắt BH tại D
=> D là trực tâm của tam giác FBC
=> FD là đường cao của tam giác FBC
=> FD _I_ BC
mà ED _I_ BC (chứng minh trên)
=> \(FD\equiv ED\)
=> E, D, F thẳng hàng
khó quá