K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2023

960 cách như tên

26 tháng 1 2023

Cái mình cần là làm sao để tính ra được như vậy ấy.

1. Cho bàn cờ 8x8 và 16 quân tốt (8 đen, 8 trắng) như trong hình. Hai người chơi, mỗi người cầm 1 loại quân (trắng/ đen). Quân trắng luôn đi trước, sau đó luân phiên. Biết rằng luật cờ vua được bảo toàn, tuy nhiên không được có sự ăn quân nào. Nếu bên nào đi 1 nước làm cho bên kia không thể thực hiện nước đi nào hợp lệ thì sẽ là người thắng cuộc. Hỏi có người chơi nào có chiến...
Đọc tiếp

1. Cho bàn cờ 8x8 và 16 quân tốt (8 đen, 8 trắng) như trong hình. Hai người chơi, mỗi người cầm 1 loại quân (trắng/ đen). Quân trắng luôn đi trước, sau đó luân phiên. Biết rằng luật cờ vua được bảo toàn, tuy nhiên không được có sự ăn quân nào. Nếu bên nào đi 1 nước làm cho bên kia không thể thực hiện nước đi nào hợp lệ thì sẽ là người thắng cuộc. Hỏi có người chơi nào có chiến lược thắng hay không? Nếu có, hãy mô tả và giải thích chiến lược đó.

                                                                                  

 2. Cho bàn cờ kích thước \(n\times n\). Hỏi 1 quân mã xuất phát từ 1 ô góc của bàn cờ đến góc đối diện thì cần ít nhất bao nhiêu nước đi? (Biết rằng quân mã đi như mã trong cờ vua)

                                                                               

 3. Tìm số quân tượng lớn nhất có thể đặt vào bàn cờ vua 8x8 sao cho không quân tượng nào tấn công quá 3 quân tượng khác (tượng tấn công như trong cờ vua, đi chéo vô hạn và không tấn công xuyên thấu, quan hệ tấn công là 2 chiều)

                                                                             

 4. Có bao nhiêu cách đặt 8 quân xe lên bàn cờ sao cho không có 2 quân xe nào ăn nhau và không có quân xe nào ở vị trí cấm được đánh dấu là vòng tròn màu xanh lục như hình vẽ: 

                                                                                  

 

11
18 tháng 8 2023

Em là thần đồng cờ vua nhưng bài này thì chịu

18 tháng 8 2023

?

 

 Một xứ sở nọ bao gồm những Vương quốc của các quân cờ và vùng đất của xứ sở này hiển nhiên được kẻ thành các ô vuông đơn vị giống như bàn cờ. Hiện tại, một đội binh lính gồm vô số quân Cờ Đam đang tập trung đứng xếp kín ở dòng ngay phía trước đường biên giới của Vương quốc Cờ Vua (xem như là 1 đường thẳng) nhăm nhe xâm lược (như trong hình vẽ bên...
Đọc tiếp

 Một xứ sở nọ bao gồm những Vương quốc của các quân cờ và vùng đất của xứ sở này hiển nhiên được kẻ thành các ô vuông đơn vị giống như bàn cờ. Hiện tại, một đội binh lính gồm vô số quân Cờ Đam đang tập trung đứng xếp kín ở dòng ngay phía trước đường biên giới của Vương quốc Cờ Vua (xem như là 1 đường thẳng) nhăm nhe xâm lược (như trong hình vẽ bên dưới). Quốc vương của Vương quốc Cờ Vua rất lo lắng và muốn tìm hiểu về sức mạnh của đội quân này trước khi đem quân ra ứng chiến. Kết quả là Ngài phát hiện ra rằng các quân Cờ Đam luôn di chuyển theo quy tắc sau: Nếu có ba ô A, B, C nằm liên tiếp trên cùng một hàng hoặc cột sao cho B nằm giữa A và C, các ô ở A, B có quân Cờ Đam còn ô C không có quân cờ thì quân cờ ở A có thể nhảy đến C, sau đó quân cờ ở B sẽ chết. Sau khi bình tĩnh phân tích một lúc, bằng tầm nhìn chiến lược và đầu óc nhanh nhạy, Quốc vương đã thở phào và đồng thời khẳng định chắc nịch ngay: "Với cách di chuyển như vậy thì chúng thậm chí còn chẳng thể vào sâu được lãnh thổ của ta quá 4 dòng đâu! Chúng ta sẽ không cần phải ra chiến đấu." Hỏi Quốc vương nói có đúng không? Nếu đúng thì căn cứ vào đâu mà Ngài lại có thể chắc chắn như vậy?

0
13 tháng 11 2018

Vị trí của quân xe: hàng 3, cột c

Vị trí của quân mã: hàng 5, cột f

21 tháng 8 2023

quân xe :c3

quân mã :f5

DD
10 tháng 6 2021

a) Chú ý rằng với hai người \(A\)và \(B\)thi đấu với nhau thì \(A\)thi đấu với \(B\)và \(B\)thi đấu với \(A\).

Mỗi người sẽ đấu với \(n-1\)người, nên tổng số ván đấu của giải là: 

\(\frac{n\left(n-1\right)}{2}\).

b) Giả sử \(n=12\).

Tổng số ván đấu của giải là: \(\frac{12.11}{2}=66\).

Tổng số điểm của tất cả các kì thủ là: \(2\times66=132\).

Kì thủ cuối thắng ba kì thủ đứng đầu, do đó số điểm kì thủ cuối ít nhất là \(2.3=6\).

Do số điểm các kì thủ đôi một khác nhau nên tổng số điểm tối thiểu của tất cả các kì thủ là: 

\(6+7+8+9+10+11+12+13+14+15+16+17=138>132\).

Do đó không thể xảy ra điều này. 

Ta có đpcm. 

Ngày 4/4 vừa qua tại Madinah, Arập Saudi, đã diễn ra cuộc thi Olympic Toán các nước vùng Vịnh lần thứ 5.Đề thi Olympic vùng Vịnh được đánh giá là không khó, và bài toán dưới đây được coi là khó nhất cuộc thi. Mời bạn đọc thử sức.Giả sử có 4 người A, B, C và D đánh tennis đôi với nhau. Họ có thể tổ chức các trận đấu như sau: trận đấu A và B đấu với C và D, trận tiếp theo A và C...
Đọc tiếp

Ngày 4/4 vừa qua tại Madinah, Arập Saudi, đã diễn ra cuộc thi Olympic Toán các nước vùng Vịnh lần thứ 5.

Đề thi Olympic vùng Vịnh được đánh giá là không khó, và bài toán dưới đây được coi là khó nhất cuộc thi. Mời bạn đọc thử sức.

Giả sử có 4 người A, B, C và D đánh tennis đôi với nhau. Họ có thể tổ chức các trận đấu như sau: trận đấu A và B đấu với C và D, trận tiếp theo A và C đánh với B và D, cuối cùng A và D đánh với B và C. Cái hay của cách sắp xếp này là hai điều kiện sau được thỏa mãn:

a) Hai cây vợt bất kỳ chung đội với nhau đúng 1 lần.

b) Hai cây vợt bất kỳ đấu ở hai đội khác nhau đúng 2 lần.

Hỏi có thể sắp xếp các trận đấu sao cho các điều kiện a và b được thỏa mãn trong các trường hợp sau? Giải thích rõ câu trả lời.

i) Có 5 người chơi.

ii) Có 7 người chơi.

iii) Có 9 người chơi.

Kiệt trả lời xem nha

3
29 tháng 4 2016

ko pit

29 tháng 4 2016

Cóp trên mạng:

dap-an-bai-toan-kho-nhat-cuoc-thi-olympic-vung-vinh-2016

dap-an-bai-toan-kho-nhat-cuoc-thi-olympic-vung-vinh-2016-1

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Việc xếp 9 viên bi sao cho không có hai viên bi trắng nào xếp liến nhau được thực hiện qua 2 công đoạn

Công đoạn 1: Xếp 4 viên bi xanh trước, vì các viên bi có kích thước khác nhau nên quan tâm đến thứ tự, suy ra công đoạn 1 có \(4! = 24\) cách

Công đoạn 2: Xếp 5 viên bi trắng vào 5 vị trí xung quanh bi xanh, có quan tâm đến thứ tự nên công đoạn 2 có \(5! = 120\) cách

Vậy có \(120.24 = 2880\) kết quả thuận lợi cho biến cố “Không có hai viên bi trắng nào xếp liền nhau”

b) Việc xếp 9 viên bi sao cho bốn viên bi xanh được xếp liền nhau được thực hiện qua 2 công đoạn

Công đoạn 1: Xếp 4 viên bi xanh liền nhau, vì các viên bi có kích thước khác nhau nên quan tâm đến thứ tự, suy ra công đoạn 1 có \(4! = 24\) cách

Công đoạn 2: Xếp 5 viên bi trắng có kích thước khác nhau vào bên trái hay bên phải của bi xanh, có quan tâm đến thứ tự nên công đoạn 2 có \(5!{.2^5} = 3840\) cách

Vậy có \(3840.24 = 92160\) kết quả thuận lợi cho biến cố  “Bốn viên bi xanh được xếp liền nhau” 

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Quân mã đi theo đường chéo hình chữ nhật có chiều dài 3 ô, chiều rộng 2 ô.

Do đó, từ vị trí hiện tại, quân mã có thể đi đến các vị trí A, B, C, D, E, F như dưới đây:

A có tọa độ (3; 3)

B có tọa độ (3; 1)

C có tọa độ (2; 0)

D có tọa độ (0; 0)

E có tọa độ (0; 4)

F có tọa độ (2; 4)

Vậy quân mã có thể đi đến các vị trí A(3;3), B(3;1), C(2;0), D(0;0), E(0;4), F(2;4).