Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2x-3\right)n-2n\left(n+2\right)\)
\(=n\left(2x-3-2n-4\right)\)
\(=-7n\)
Vì \(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM
\(b,n\left(2n-3\right)-2n\left(n+1\right)\)
\(=n\left(2n-3-2n-2\right)\)
\(=-5n⋮5\) (ĐPCM)
Rút gọn
\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)
\(=-76\)
\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)
\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)
\(=9\)
\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)
\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)
= -3
Bài 1.
a. -3xy2 . (4x2 - xy + 2y2)= -12x3y2 + 3x2y3 - 6xy4
b. 3xn-2yn-1 . (xn+2 - 2xn+1yn + yn+1) = 3x2nyn-1 - 6x2n-1y2n-1 + 3xn-2y2n
Bài 2.
a. 2x(x+3)-3x2(x+2)+x(3x2+4x-6)
= 2x2+6x-3x3-6x2+3x3+4x2-6x
= 0
Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.
b. 3x(2x2-x)-2x2(3x+1)+5(x2-1)
= 6x3-3x2-6x3-2x2+5x2-5
= -5
Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.
c. 4(x-6)-x2(3x+2)+x(5x-4)+3x2(x-1)
= 4x-24-3x3-2x2+5x2-4x+3x3-3x2
= -24.
Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.
d. xy(3x2-6xy)-3(x3y-2x2y2-1)
= 3x3y-6x2y2-3x3y+6x2y2+3
= 3.
Vậy giá trị của biểu thức trên không phụ thuộc vào các biến x,y.
Câu 1:
$(2x^2-3)(x+5)=2x^2(x+5)-3(x+5)=2x^3+10x^2-3x-15$
Câu 2:
a.
$(x+3)^2=x^2+2.x.3+3^2=x^2+6x+9$
b.
$y^2-25=y^2-25$
\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)
\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)
\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)
\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)
\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)
\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)
\(\Leftrightarrow4x^2+6x-51=0\)
\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)