K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

66saes bghn rw3 

2 tháng 11 2018

@Ace Legona @Nguyễn Thanh Hằng @Liana @Ma Đức Minh @Sky SơnTùng

3 tháng 11 2018

P là tập hợp các số gì vậy?

1 . p =3

2. chịu

Hk tốt

12 tháng 11 2018

Chứng minh

b) Thiếu đề với p>3. nhé!. Vì p=3 thì p+100=103 là số nguyên tố

p là số nguyên tố nên  có dạng 3k+1, 3k+2, thuộc N

Với p=3k+1 => p+8=3k+9 \(⋮3\)loại vì p+8 là số nguyen tố

Với p=3k+2=> p+100=3k+2+100=3k+102 =3(k+34) chia hết cho 3

=> p+100 là hợp số.

15 tháng 11 2018

Bài 1:

+Nếu p = 2 ⇒⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒⇒ p không chia hết cho 5 ⇒⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮⋮ 5 (loại)
⇒⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm

15 tháng 11 2018

Bài 2:

ta có: p + 8 là số nguyên tố

=> p > 3

mà p là số nguyên tố

=> p được viết dưới dạng: 3k+1; 3k+2

nếu p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 chia hết cho 3 ( vô lí, p + 8 sẽ không là số nguyên tố ( đầu bài cho)) (Loại)

nếu p = 3k + 2 => p + 100 = 3k + 2 + 100 = 3k + 102 chia hết cho 3

=> p + 100 là hợp số (đpcm)

Câu 1:Tìm một số có hai chữ số biết rằng khi viết thêm chữ số 0 vào giữa hai chữ số của số đó thì được số mới gấp 7 lần số đã cho.Số cần tìm là Câu 2:Q là tập hợp các số tự nhiên có hai chữ số mà trong mỗi số chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2. Số phần tử của tập Q là Câu 3:Có 2 con đường đi từ A đến B và có 3 con đường đi từ B đến C. Hỏi có...
Đọc tiếp

Câu 1:
Tìm một số có hai chữ số biết rằng khi viết thêm chữ số 0 vào giữa hai chữ số của số đó thì được số mới gấp 7 lần số đã cho.Số cần tìm là 

Câu 2:
Q là tập hợp các số tự nhiên có hai chữ số mà trong mỗi số chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2. Số phần tử của tập Q là 

Câu 3:
Có 2 con đường đi từ A đến B và có 3 con đường đi từ B đến C. Hỏi có bao nhiêu con đường đi từ A đến C qua B ?
Trả lời:  con đường.

Câu 4:
Số phần tử của tập hợp A = {4; 6; 8; ...; 78; 80} là 

Câu 5:
Cho hai tập hợp A = {1; 2; 3; 4; 5; 6} và B là tập hợp các số tự nhiên lẻ, lớn hơn 2. Gọi C là một tập hợp con nào đó của cả hai tập hợp A và B. Số phần tử nhiều nhất có thể của C là 

Câu 6:
Để viết được các số tự nhiên từ 100 đến 199 phải dùng bao nhiêu chữ số 9 ?
Trả lời:  số.

Câu 7:
Cho 5 điểm trong đó không có 3 điểm nào thẳng hàng. Số tất cả các đường thẳng đi qua 2 trong 5 điểm đã cho là 

Câu 8:
Cho tập hợp M = {5; 8; 9; 1986; 2010}. Có bao nhiêu tập hợp con của M gồm những số chẵn ?
Trả lời:  tập hợp.

Câu 9:
Tìm số có 3 chữ số biết rằng nếu viết thêm chữ số 1 vào trước số đó thì được số mới gấp 9 lần số ban đầu.
Số cần tìm là 

Câu 10:
Cho hai tập hợp A = {2; 4; 6; 8; 10} và B = {5; 6; 7; 8; 9; 10}. Số tập hợp con của đồng thời hai tập hợp A và B là 

3
27 tháng 12 2015

1/ 15

2/ 8

3/ 6 con đường

4/ 39 phần tử

5/ 2

6/11 số

7/ 10 đường thẳng

8/ 4

9/ 125

10/ 8 tập hợp con

6

 

17 tháng 2 2021

Cho tập hợp A = {4; 5; 6; 8; 9} và tập hợp B = {7; 8}. Số các số có hai chữ số có dạng ab, với a ∈ A và b ∈ B là ?

6 tháng 11 2019

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

12 tháng 3 2022

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số