K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2016

1. a) Ta có:

|x-3| > 0

=> |x-3| + 2 > 2

=> (|x-3| + 2)2 > 22 = 4

|y+3| > 0

=> P = (|x-3|+2)2 + |y+3| + 2007 > 4 + 0 + 2007 = 2011

=> GTNN của P là 2011

<=> x-3 = y+3 = 0

<=> x = 3; y = -3.

9 tháng 4 2018

\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(100=2x+4\)

\(\Leftrightarrow\)\(2x=96\)

\(\Leftrightarrow\)\(48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

9 tháng 4 2018

\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)

\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(49=x+1\)

\(\Leftrightarrow\)\(x=48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

b) Ta có: \(5-\left|3x-1\right|=3\)

\(\Leftrightarrow\left|3x-1\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=-2\\3x-1=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=1\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{1}{3};1\right\}\)

c) Ta có: \(\left(1-2x\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}1-2x=3\\1-2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-2\\2x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;2\right\}\)

15 tháng 8 2017

\(\dfrac{1-2x}{2017}+\dfrac{2-2x}{2016}=\dfrac{3-2x}{2015}+\dfrac{4-2x}{2014}\)

\(\Rightarrow\left(\dfrac{1-2x}{2017}+1\right)+\left(\dfrac{2-2x}{2016}+1\right)=\left(\dfrac{3-2x}{2015}+1\right)+\left(\dfrac{4-2x}{2014}+1\right)\)

\(\Rightarrow\dfrac{2018-2x}{2017}+\dfrac{2018-2x}{2016}-\dfrac{2018-2x}{2015}-\dfrac{2018-2x}{2014}=0\)

\(\Rightarrow\left(2018-2x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)

\(2017>2016>2015>2014\) nên

\(\dfrac{1}{2017}< \dfrac{1}{2016}< \dfrac{1}{2015}< \dfrac{1}{2014}\)

\(\Rightarrow\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}< 0\)

\(\Rightarrow2018-2x=0\Rightarrow x=1009\)

Vậy...........

Chúc bạn học tốt!!!

15 tháng 8 2017

\(\dfrac{1-2x}{2017}+\dfrac{2-2x}{2016}=\dfrac{3-2x}{2015}+\dfrac{4-2x}{2014}\)

\(\Rightarrow\left(\dfrac{1-2x}{2017}+1\right)+\left(\dfrac{2-2x}{2016}+1\right)=\left(\dfrac{3-2x}{2015}+1\right)+\left(\dfrac{4-2x}{2014}+1\right)\)

\(\Rightarrow\dfrac{2018-2x}{2017}+\dfrac{2018-2x}{2016}-\dfrac{2018-2x}{2015}-\dfrac{2018-2x}{2014}=0\)

\(\Rightarrow\left(20418-2x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)

\(Ta\) \(có\)\(:\) \(2017>2016>2015>2014\)

\(\Rightarrow\dfrac{1}{2017}< \dfrac{1}{2016}< \dfrac{1}{2015}< \dfrac{1}{2014}\)

\(\Rightarrow\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}< 0\)

\(\Rightarrow2018-2x=0\)

\(\Rightarrow2x=2018-0\)

\(\Rightarrow2x=2018\)

\(\Rightarrow x=2018:2\)

\(\Rightarrow x=1009\)