Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.
xy-2y-3= 3x - x^2
<=> x^2 + xy - 2y - 3x -3 =0
<=> x.(x+y) - 2.(y+x) -(x+3) =0
<=> (x+y).(x-2) - ( x-2) -5 = 0
<=> (x-2)(x+y-1) =5
rồi xét ước của 5
Bài làm
xy - x + 2( y -1) = 13
=> x ( y -1 ) + 2(y -1 ) =13
=> ( x + 2 )( y - 1 ) = 13
=> x + 2 và y-1 thuộc ước của 13
* Nếu x+2 = 1 và y- 1 = 13 => x = -1 và y=14
* Nếu x + 2 = -1 và y-1 = -13 => x = 1 và y = -12
* Nếu x+2 = 13 và y-1 = 1 => x = 11 và y = 2
* Nếu x+ 2 = -13 và y-1 = -1 => x = -11 và y = 0
kết luận:...
\(a)\)\(xy-x-y=1\)
\(\Leftrightarrow\)\(\left(xy-x\right)-\left(y-1\right)=2\)
\(\Leftrightarrow\)\(x\left(y-1\right)-\left(y-1\right)=2\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(y-1\right)=2\)
\(\Rightarrow\)\(\left(x-1\right);\left(y-1\right)\inƯ\left(2\right)\)
Lập bảng :
\(x-1\) | \(1\) | \(2\) | \(-1\) | \(-2\) |
\(y-1\) | \(2\) | \(1\) | \(-2\) | \(-1\) |
\(x\) | \(2\) | \(3\) | \(0\) | \(-1\) |
\(y\) | \(3\) | \(2\) | \(-1\) | \(0\) |
Vậy \(\left(x,y\right)\in\left\{\left(2;3\right),\left(3;2\right),\left(0;-1\right),\left(-1;0\right)\right\}\)
Chúc bạn học tốt ~
\(b)\)\(xy-2x-2y=1\)
\(\Leftrightarrow\)\(\left(xy-2x\right)-\left(2y-4\right)=5\)
\(\Leftrightarrow\)\(x\left(y-2\right)-2\left(y-2\right)=5\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(y-2\right)=5\)
\(\Rightarrow\)\(\left(x-2\right);\left(y-2\right)\inƯ\left(5\right)\)
Lập bảng :
\(x-2\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y-2\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(x\) | \(3\) | \(7\) | \(1\) | \(-3\) |
\(y\) | \(7\) | \(3\) | \(-3\) | \(1\) |
Vậy \(\left(x;y\right)\in\left\{\left(3;7\right),\left(7;3\right),\left(1;-3\right),\left(-3;1\right)\right\}\)
Chúc bạn học tốt ~
a) \(xy+3x-2y-7=0\)
\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)
\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)
mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị:
x-2 | 1 | -1 |
y+3 | 1 | -1 |
x | 3 | -1 |
y | -2 | -4 |
Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).
b) \(5y-2x^2-2y^2+2=0\)
\(\Leftrightarrow16x^2+16y^2-40y-16=0\)
\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)
Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.
Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)
mà \(\left(4x\right)^2⋮16\)nên ta có:
\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)
\(a,x+y=xy\)
Do x;y có vai trò như nhau nên không mất tính tổng quát ,:
TH1: \(x=0\)
\(y=0\)
TH2: giả sử \(x\ge y\ge1\)
\(\Rightarrow xy=x+y\le2x\)
\(\Rightarrow y\le2\) \(\left(x\ne0\right)\)
Mà \(y\ge1\Rightarrow y\left\{1;2\right\}\)
\(\Rightarrow TH1:y=1\Rightarrow x-x=1\left(ktm\right)\)
\(TH2:y=2\Rightarrow2x=x+2\Rightarrow x=2\)
TH3: Giả sử \(x\le y\le-1\)
........
Vậy các cặp (x;y) t/m là: .........