Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\widehat{ABO}\)là góc tạo bởi tia tiếp tuyến AB và dây cung BD ( đường kính AB )
\(\Rightarrow\widehat{ABO}=\frac{1}{2}.\widehat{BOD}=\frac{1}{2}.180^o=90^o\)
Chứng mình ương tự với \(\widehat{ACO}\), suy ra \(\widehat{ACO}=90^o\)
Xét tứ giác ABOC có :
Góc ABO và góc ACO là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=90^o+90^o=180^o\)
=> Tứ giác ABOC nội tiếp đường tròn ( theo tính chất tổng hai góc đối bằng 180 độ ... )
Gọi I là trung điểm của AB
Có tam giác ABO vuông tại B, trung tuyến là BI
=> BI = 1/2.AO=AI=IO (1)
Tam giác ACO vuông tại C, có trung tuyến là CI
=> CI=1/2.AO=AI=IO (2)
Từ (1) và (2) => BI = AI = IO = IC
=> I cách đều 4 đỉnh tứ giác ABOC
=> I là tâm đường tròn ngoại tiếp tứ giác ABOC , có bán kinh R= 1/2.AO
c, Mình không vẽ được hình nên bạn thông cảm Gọi tâm đường tròn ngoại tiếp tam giác CME là K
Từ câu b : AM^2=AE.AC
Mà AC là cát tuyến của đường tròn ngoại tiếp tam giác CME
=> AM là tiếp tuyến của đường tròn ngoại tiếp tam giác CME
=> \(AM\perp MK\)
Mà \(AM\perp MB\)
=> M,K,B thẳng hàng
=> \(K\in MB\)cố định
Khi đó để NKmin thì K là hình chiếu của N lên MB
Đến đây bạn tự tính NK nhé
Sau đó từ MK để xác định điểm C
c)
5. Theo trên: \(\widehat{AMN}=\widehat{ACM}\)
=> AM là tiếp tuyến của đường tròn ngoại tiếp \(\Delta\) ECM;
Nối MB ta có\(\widehat{AMB}\)= 900 , do đó tâm O1 của đường tròn ngoại tiếp\(\Delta\)ECM phải nằm trên BM
. Ta thấy NO1 nhỏ nhất khi NO1 là khoảng cách từ N đến BM => NO1 \(\perp\)BM.
Gọi O1 là chân đường vuông góc kẻ từ N đến BM ta được:
O1 là tâm đường tròn ngoại tiếp D ECM có bán kính là O1M.
Do đó để khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất thì C phải là giao điểm của đường tròn tâm O1 bán kính O1M với đường tròn (O) trong đó O1 là hình chiếu vuông góc của N trên BM.
Giải pt chứa nhiều dấu trị tuyệt đối thì cần xét các khoảng giá trị.
Để xét các khoảng giá trị, ta căn cứ vào xét các khoảng mà tại đó dấu trị tuyệt đối có thể phá.
Ví dụ: Ta biết $|x-a|=x-a$ nếu $x\geq a$ và $a-x$ nếu $x< a$
Do đó, khi gặp phải pt:
$|x-1|+|x+1|=3x-5$ chả hạn. Ta thấy:
$|x-1|=x-1$ nếu $x\geq 1$ và $1-x$ nếu $x< 1$
$|x+1|=x+1$ nếu $x\geq -1$ và $-x-1$ nếu $x< -1$
Như vậy, kết hợp cả 2 điều trên thì ta xét các khoảng sau:
TH1: $x\geq 1$
TH2: $-1\leq x< 1$
TH3: $x< -1$
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC
b: Xét (O) có
ΔCND nội tiếp
CD là đường kính
Do đó: ΔCND vuông tại N
=>CN\(\perp\)ND tại N
=>CN\(\perp\)AD tại N
Xét ΔDCA vuông tại C có CN là đường cao
nên \(AN\cdot AD=AC^2\left(3\right)\)
Ta có: OA là trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOCA vuông tại C có CH là đường cao
nên \(AH\cdot AO=AC^2\left(4\right)\)
Từ (3) và (4) suy ra \(AN\cdot AD=AH\cdot AO\)
c: Ta có: \(AH\cdot AO=AN\cdot AD\)
=>\(\dfrac{AH}{AD}=\dfrac{AN}{AO}\)
Xét ΔAHN và ΔADO có
\(\dfrac{AH}{AD}=\dfrac{AN}{AO}\)
\(\widehat{HAN}\) chung
Do đó: ΔAHN đồng dạng với ΔADO
=>\(\widehat{AHN}=\widehat{ADO}\)
Ta có: ΔOCA vuông tại C
=>\(CO^2+CA^2=OA^2\)
=>\(CA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(CA=R\sqrt{3}\)
Ta có: ΔDCA vuông tại C
=>\(DC^2+CA^2=DA^2\)
=>\(DA^2=\left(2R\right)^2+\left(R\sqrt{3}\right)^2=7R^2\)
=>\(DA=R\sqrt{7}\)
Xét ΔDCA vuông tại C có \(sinCDA=\dfrac{CA}{DA}\)
=>\(sinCDA=\dfrac{R\sqrt{3}}{R\sqrt{7}}=\sqrt{\dfrac{3}{7}}=\dfrac{\sqrt{21}}{7}\)
=>\(sinAHN=\dfrac{\sqrt{21}}{7}\)
BC = 5 cm
violympic mà cx phải giải chi tiết ak??
45645764575678768769780845735732156364576576587687
Min của biểu thức này không tồn tại (nó chỉ tồn tại khi tam giác ABC là 1 tam giác suy biến nghĩa là 1 cạnh bằng 0)
A B C Cạnh kề Cạnh đối
-Cạnh đối là cạnh đối diện với góc đó
-Cạnh huyền là cạnh dài nhất nói chung là 2 cạnh tạo ra góc vuông thì cạnh còn lại là cạnh huyền đối với tam giác ABC trên
-cạnh kề là cạnh còn lại
THEO Ý HIỂU CỦA MÌNH LÀ VẬY AI CÓ Ý KIẾN THÌ GÓP Ý NHA :)