K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC vuông tại A có HB là hình chiếu của AB trên BC(AH là đường cao ứng với cạnh BC)

nên \(AB^2=HB\cdot BC\)(định lí 1 về hệ thức lượng trong tam giác vuông)

Xét ΔABC vuông tại A có HC là hình chiếu của AC trên BC(AH là đường cao ứng với cạnh BC)

nên \(AC^2=HC\cdot BC\)(định lí 1 về hệ thức lượng trong tam giác vuông)

Ta có: \(\frac{AB^2}{AC^2}=\frac{HB\cdot BC}{HC\cdot BC}=\frac{HB}{HC}\)(đpcm)

b) Xét ΔAHB vuông tại H có BE là hình chiếu của HB trên AB(HE là đường cao ứng với cạnh AB)

nên \(HB^2=BE\cdot AB\)(định lí 1 về hệ thức lượng trong tam giác vuông)

Xét ΔAHC vuông tại H có CF là hình chiếu của CH trên AC(HF là đường cao ứng với cạnh AC)

nên \(HC^2=CF\cdot AC\)(định lí 1 về hệ thức lượng trong tam giác vuông)

Ta có: \(\frac{HB}{HC}=\frac{AB^2}{AC^2}\)

\(\Leftrightarrow\left(\frac{HB}{HC}\right)^2=\left(\frac{AB^2}{AC^2}\right)^2=\frac{AB^4}{AC^4}\)

hay \(\frac{HB^2}{HC^2}=\frac{AB^4}{AC^4}\)

\(\frac{HB^2}{HC^2}=\frac{BE\cdot AB}{CF\cdot AC}\)

nên \(\frac{AB^4}{AC^4}=\frac{BE\cdot AB}{CF\cdot AC}\)

\(\Leftrightarrow\frac{AB^4}{AC^4}=\frac{BE}{CF}\cdot\frac{AB}{AC}\)

hay \(\frac{BE}{CF}=\frac{AB^4}{AC^4}:\frac{AB}{AC}=\frac{AB^4}{AC^4}\cdot\frac{AC}{AB}=\frac{AB^3}{AC^3}\)(đpcm)

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AH^2=AE\cdot AB\left(2\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AH^2=AF\cdot AC\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AE\cdot AB=AF\cdot AC=BH\cdot HC\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:

a) Áp dụng đl Pitago cho các tam giác vuông $BHE, CHF$:

\(BC^2=(BH+CH)^2=BH^2+CH^2+2BH.CH\)

\(=BE^2+EH^2+FH^2+CF^2+2BH.CH\)

\(=(EH^2+HF^2)+2BH.CH+BE^2+CF^2(1)\)

Xét tứ giác $AEHF$ có 3 góc vuông \(\widehat{EAF}=\widehat{HFA}=\widehat{AEH}=90^0\) nên $AEHF$ là hình chữ nhật

\(\Rightarrow HF=EA\)

Do đó: \(EH^2+HF^2=EH^2+EA^2=AH^2(2)\) (theo định lý Pitago)

Xét tam giác $BAH$ và $ACH$ có:

\(\widehat{BAH}=\widehat{ACH}(=90^0-\widehat{HAC})\)

\(\widehat{BHA}=\widehat{AHC}=90^0\)

\(\Rightarrow \triangle BAH\sim \triangle ACH(g.g)\Rightarrow \frac{BH}{AH}=\frac{AH}{CH}\Rightarrow BH.CH=AH^2(3)\)

Từ \((1);(2);(3)\Rightarrow BC^2=AH^2+2.AH^2+BE^2+CF^2=3AH^2+BE^2+CF^2\)

(đpcm)

b)

Xét tam giác $BAH$ và $BCA$ có:

\(\widehat{B}\) chung

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\Rightarrow \triangle BAH\sim \triangle BCA(g.g)\Rightarrow \frac{BA}{BH}=\frac{BC}{BA}\)

\(\Rightarrow BH=\frac{BA^2}{BC}(4)\)

Hoàn toàn tương tự: \(\triangle CAH\sim \triangle CBA(g.g)\Rightarrow CH=\frac{CA^2}{BC}(5)\)

Từ \((4);(5)\Rightarrow \frac{BH}{CH}=\frac{BA^2}{BC}:\frac{CA^2}{BC}=\frac{BA^2}{CA^2}\) (đpcm)

c)

Hoàn toàn tương tự như cách CM tam giác đồng dạng phần b, ta có:

\(\triangle BHE\sim \triangle BAH(g.g)\Rightarrow \frac{BH}{BA}=\frac{BE}{BH}\Rightarrow BE=\frac{BH^2}{AB}\)

\(\triangle CHF\sim \triangle CAH(g.g)\Rightarrow \frac{CH}{CA}=\frac{CF}{CH}\Rightarrow CF=\frac{CH^2}{CA}\)

Do đó, kết hợp với kết quả phần b:

\(\frac{BE}{CF}=\frac{BH^2}{AB}:\frac{CH^2}{CA}=(\frac{BH}{CH})^2.\frac{CA}{AB}=\frac{AB^4}{AC^4}.\frac{AC}{AB}=\frac{AB^3}{AC^3}\) (đpcm)

d) Ta có:

\(BC.HE.HF=BC.\frac{HE.BA}{BA}.\frac{HF.AC}{AC}=BC.\frac{2S_{BHA}}{BA}.\frac{2S_{CHA}}{CA}\)

\(=BC.\frac{BH.AH}{BA}.\frac{CH.AH}{CA}=\frac{BC.AH}{AB.AC}.AH.BH.CH\)

\(=\frac{2S_{ABC}}{2S_{ABC}}.AH.AH^2\) (theo (3))

\(=AH^3\) (đpcm)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Hình vẽ:

Hệ thức lượng trong tam giác vuông