Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Leftrightarrow\left\{{}\begin{matrix}x-7y=0\\11x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{11}\\y=\dfrac{x}{7}=\dfrac{5}{77}\end{matrix}\right.\)
Lời giải:
a. Bạn cần viết đề bằng công thức toán để đề được rõ ràng hơn.
b. Ta có:
$(7y-x)^{2020}\geq 0$ với mọi $x,y$
$|5-11x|^{2021}\geq 0$ với mọi $x,y$
Do đó để tổng của chúng bằng $0$ thì:
$(7y-x)^{2020}=|5-11x|^{2021}=0$
$\Leftrightarrow x=\frac{5}{11}; y=\frac{5}{77}$
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
\(A=\left(\dfrac{2020}{2021}xy^5z\right).\left(\dfrac{2020}{2021}x^3yz^2\right).\left(-\dfrac{2020}{2021}\right)^0\)
\(a)A=\dfrac{2020.2021.2020}{2021.2020.2021}.\left(x.x^3\right).\left(y^5.y\right).\left(z.z^2\right)\Leftrightarrow A=\dfrac{2020}{2021}x^4.y^6.z^3\)
\(b)A=\dfrac{2020}{2021}x^4.y^6.z^3\)
\(\Rightarrow\text{A có hệ số là:}\dfrac{2020}{2021}\)
\(\text{Phần biến là:}\left(x,y,z\right)\)
\(c)\text{Xét A ta có:}\dfrac{2020}{2021}< 0;x^4,y^6\text{ luôn }< 0\)
\(\Rightarrow\dfrac{2020}{2021}x^4.y^6>0\Rightarrow\text{ Nếu }z< 0\Rightarrow A\le0\text{ và z có số mũ là:3}\)
\(\text{Chẳng hạn:}\left(-\right).\left(-\right).\left(-\right)=\left(-\right).< 0\Rightarrow z\text{ phải }\ge0\text{ thì }A\ge0\)
\(\Rightarrow Z\in N\)
a, \(\left(x+y\right)^{2020}+\left|2021-y\right|\le0\)
Dấu ''='' xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-y\\y=2021\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2021\\y=2021\end{cases}}}\)
b, \(\left|3x+2y\right|^{209}+\left|4y-1\right|^{2020}\le0\)
Dấu ''='' xảy ra <=> \(\hept{\begin{cases}3x=-2y\\4y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-2y\\y=\frac{1.}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-\frac{1}{2}\\y=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{6}\\y=\frac{1}{4}\end{cases}}\)Vậy \(\left\{x;y\right\}=\left\{-\frac{1}{6};\frac{1}{4}\right\}\)
Lời giải:
a) $(x^2+1)(x-1)=0\Rightarrow x^2+1=0$ hoặc $x-1=0$
$\Rightarrow x^2=-1$ hoặc $x=1$. Dễ thấy TH $x^2=-1< 0$ vô lý nên $x=1$
Thay vào biểu thức $E$ thì:
$E=3+8-1=10$
b) $x-5=0$ nên:
$G=x^{2020}(x-5)+2=x^{2020}.0+2=2$
\(\left(7y-x\right)^{2020}\ge0,\left|5-11x\right|^{2021}\ge0\)
Mà \(\left(7y-x\right)^{2020}+\left|5-11x\right|^{2021}=0\\ \Rightarrow\left\{{}\begin{matrix}\left(7y-x\right)^{2020}=0\\\left|5-11x\right|^{2021}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7y-x=0\\5-11x=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7y-\dfrac{5}{11}=0\\x=\dfrac{5}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{77}\\x=\dfrac{5}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(7y-x\right)^{2020}=0\\\left|5-11x\right|^{2021}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y-x=0\\5-11x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=x\\x=\dfrac{5}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{11}\\y=\dfrac{5}{77}\end{matrix}\right.\)