K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

Thêm nữa câu a) Tính: M(x) + N(x)+ P(x)

B) Tính M(x) - N (x) - P(x)

ok rồi giúp mình với nha

2 tháng 5 2023

\(P\left(x\right)=3x^2+7+2x^4-3x^2-4-5x+2x^3\)

\(=2x^4+2x^3+\left(3x^2-3x^2\right)-5x-4+7\)

\(=2x^4+2x^3-5x+3\)

\(Q\left(x\right)=-3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)

\(=\left(5x^4-x^4\right)+\left(-3x^3+x^3\right)+2x^2+\left(x+4x\right)-2\)

\(=4x^4-2x^3+2x^2+5x-2\)

7 tháng 1 2018

a) \(2^3:\left|x-2\right|=2\)

\(\Leftrightarrow8:\left|x-2\right|=2\)

\(\Leftrightarrow\left|x-2\right|=8:2\)

\(\Leftrightarrow\left|x-2\right|=4\)

Xét trường hợp 1: \(x-2=4\)

\(\Rightarrow x=4+2\)

\(\Rightarrow x=6\)

Xét trường hợp 2: \(x-2=-4\)

\(\Rightarrow x=-4+2\)

\(\Rightarrow x=-\left(4-2\right)\)

\(\Rightarrow x=-2\)

Vậy \(x=6\) hoặc \(x=-2\)

b)

7 tháng 1 2018

cảm ơn nha

28 tháng 9 2021

=0 bạn nha

7 tháng 6 2020

vậy câu hỏi là gì?

7 tháng 11 2021

x^3+3x^2+6x+4

12 tháng 7 2018

\(4)D=x^2+x+1\)

\(D=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(D=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(D=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của x.

Các câu khác lm tương tự nhé.

Cho góp ý xíu: lần sau bn đưa từng câu một lên diễn đàn thì sẽ có câu trả lời nhanh hơn là đưa cùng một lúc như thế này đấy

hok tốt~

3 tháng 8 2020

\(D=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( đpcm )

\(F=2x^2+4x+3=2\left(x^2+2x+1\right)+1=2\left(x+1\right)^2+1\)

\(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+1\ge1>0\forall x\)( đpcm )

\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{11}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)

\(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Rightarrow3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\)( đpcm )

\(H=4x^2+4x+2=4\left(x^2+x+\frac{1}{4}\right)+1=4\left(x+\frac{1}{2}\right)^2+1\)

\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}\right)^2+1\ge1>0\forall x\)( đpcm )

\(K=4x^2+3x+2=4\left(x^2+\frac{3}{4}x+\frac{9}{64}\right)+\frac{23}{16}=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\)

\(4\left(x+\frac{3}{8}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\ge\frac{23}{16}>0\forall x\)( đpcm )

\(L=2x^2+3x+4=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{23}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\)

\(2\left(x+\frac{3}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)( đpcm )

A=x^4+3x^3-5x^2+7

B=x^2+4x^2+2x+1=5x^2+2x+1

A-B=x^4+3x^3-5x^2+7-5x^2-2x-1

=x^4+3x^3-10x^2-2x+6