K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

a)  = \(\left(\sqrt{x}+\sqrt{2}\right)\left(\sqrt{x}-\sqrt{2}\right)\)

b)  \(\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)\)

c) = \(4-\left(-x\right)=\left(2-\sqrt{-x}\right)\left(2+\sqrt{-x}\right)\)

d) \(=\left(\sqrt{\text{a}}\text{+}\sqrt{\text{b}}\right)^2\)

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2

28 tháng 4 2016

1. *nếu x>=1.Ta có:A=x5(x3-1)+x(x-1)>0

    *nếu x<1. ta có: A=x8 +x (1-x3)+ (1-x)>0  (từng số hạng >o)

   

28 tháng 4 2016

ai là bạn cũ của NICK "Kiệt" thì kết bạn với tui ! nhất là những người có choi Minecraft !

10 tháng 8 2017

hi kết bạn nha

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

18 tháng 12 2018

Ta có:

\(\sqrt{x^2-1}\)

\(=\sqrt{\frac{1}{4}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)^2-1}\)

\(=\sqrt{\frac{1}{4}\left(\frac{a}{b}+2+\frac{b}{a}\right)-1}\)

\(=\sqrt{\frac{\left(a-b\right)^2}{4ab}}\)

\(=\frac{|a-b|}{2\sqrt{ab}}\)

Thế vào Q ta được:

\(Q=\frac{\frac{2ab|a-b|}{2\sqrt{ab}}}{\frac{1}{2}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)-\frac{|a-b|}{2\sqrt{ab}}}\)

\(=\frac{2ab|a-b|}{\left(a+b\right)-|a-b|}\)

Vì \(|a-b|=\hept{\begin{cases}a-b\left(a\ge b\right)\\b-a\left(a< b\right)\end{cases}}\)

\(\Rightarrow Q=\hept{\begin{cases}a-b\left(a\ge b\right)\\\frac{b}{a}\left(b-a\right)\left(a< b\right)\end{cases}}\)

NV
20 tháng 6 2019

a/ Bình phương 2 vế:

\(\frac{a+2\sqrt{ab}+b}{4}\le\frac{a+b}{2}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ Bình phương:

\(a^2+b^2+c^2+d^2+2\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge a^2+b^2+c^2+d^2+2ac+2bd\)

\(\Leftrightarrow\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge ac+bd\)

\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

\(\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)

6 tháng 7 2016

Trả lời hộ mình đi

7 tháng 8 2017

a) Please xem lại đề

b) \(a+b\ge2\sqrt{a}+2\sqrt{b}-2\)

\(\Leftrightarrow\left(a-2\sqrt{a}+1\right)+\left(b-2\sqrt{b}+1\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b}-1\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra \(\Leftrightarrow a=b=1\)

c) Áp dụng BĐT Cauchy cho 3 số

\(a+\dfrac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\dfrac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\left(a-b\right).b.\dfrac{1}{b\left(a-b\right)}}=3\)

Đẳng thức xảy ra \(\Leftrightarrow a-b=b=\dfrac{1}{b\left(a-b\right)}\Leftrightarrow a=2;b=1\)

d) Áp dụng BĐT Cauchy cho 4 số

\(\dfrac{3x^4+16}{x^3}=3x+\dfrac{16}{x^3}=x+x+x+\dfrac{16}{x^3}\ge4\sqrt[4]{x.x.x.\dfrac{16}{x^3}}=8\)

Đẳng thức xảy ra \(\Leftrightarrow x=\dfrac{16}{x^3}\Leftrightarrow x=2\)

7 tháng 8 2017

câu nào cũng được