Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)
\(=\frac{b^2c^2}{ab+ca}+\frac{c^2a^2}{bc+ab}+\frac{a^2b^2}{ca+bc}\)
\(\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{1}{2}\left(ab+bc+ca\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel(hoặc áp dụng BĐT quen thuộc: \(\frac{p^2}{m}+\frac{q^2}{n}\ge\frac{\left(p+q\right)^2}{m+n}\) 2 lần),ta có:
\(VT=\frac{\left(\frac{1}{a^2}\right)}{a\left(b+c\right)}+\frac{\left(\frac{1}{b^2}\right)}{b\left(c+a\right)}+\frac{\left(\frac{1}{c^2}\right)}{c\left(a+b\right)}\)
\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}\) (thay abc = 1 vào)
\(=\frac{ab+bc+ca}{2}=\frac{1}{2}\left(ab+bc+ca\right)^{\left(đpcm\right)}\)
Lời giải:
Phản chứng. Giả sử cả 3 bất đẳng thức trên đều đúng.
Khi đó:
\(a(2-b)b(2-c)c(2-a)>1.1.1=1\)
\(\Leftrightarrow a(2-a)b(2-b)c(2-c)>1(*)\)
Áp dụng BĐT AM-GM cho 2 số dương $a,2-a$ ta có:
\(a(2-a)\leq \left(\frac{a+(2-a)}{2}\right)^2=1\)
Tương tự:
\(b(2-b)\leq \left(\frac{b+(2-b)}{2}\right)^2=1\)
\(c(2-c)\leq \left(\frac{c+(2-c)}{2}\right)^2=1\)
Nhân theo vế:
\(a(2-a)b(2-b)c(2-c)\leq 1\) (trái với $(*)$)
Như vậy suy ra điều giả sử là sai. Tức là ít nhất một trong 3 BĐT đã cho là sai.
Câu 2:
Áp dụng BĐT Bunhiacopxky:
\(\left(a^2+\frac{1}{2}+\frac{1}{2}\right)[1+2+2(b+c)^2]\geq (a+1+b+c)^2\)
\(\Rightarrow \frac{5}{16}(a^2+1)[3+2(b+c)^2]\geq \frac{5}{16}(a+b+c+1)^2\)
Để hoàn thành bài toán ta cần chứng minh:
\((a^2+1)(b^2+1)(c^2+1)\geq \frac{5}{16}(a^2+1)[3+2(b+c)^2]\)
\(\Leftrightarrow (b^2+1)(c^2+1)\geq \frac{5}{16}[3+2(b+c)^2]\)
\(\Leftrightarrow b^2c^2+\frac{3}{8}(b^2+c^2)+\frac{1}{16}-\frac{5}{4}bc\geq 0\)
\(\Leftrightarrow (bc-\frac{1}{4})^2+\frac{3}{8}(b-c)^2\geq 0\)
(Luôn đúng)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)
Câu 1:
Áp dụng BĐT Bunhiacopxky:
\((a^2+1+2)\left[1+1+\frac{(b+c)^2}{2}\right]\geq (a+1+b+c)^2\)
\(\Rightarrow 4(a^2+3)\left[2+\frac{(b+c)^2}{2}\right]\geq 4(a+b+c+1)^2\)
Để hoàn thành bài toán ta cần chứng minh:
\((a^2+3)(b^2+3)(c^2+3)\geq 4(a^2+3)\left[2+\frac{(b+c)^2}{2}\right]\)
\(\Leftrightarrow (b^2+3)(c^2+3)\geq 8+2(b+c)^2\)
\(\Leftrightarrow b^2c^2+b^2+c^2+1-4bc\geq 0\)
\(\Leftrightarrow (bc-1)^2+(b-c)^2\geq 0\) (luôn đúng)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=1\)
\(a\left(b+c\right)=1-bc\)
\(\Leftrightarrow1=ab+bc+ca\)
Ta có:
\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
\(=\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)}\)
\(=\sqrt{\left(a+b\right)\left(c+a\right)\left(b+c\right)\left(a+b\right)\left(c+a\right)\left(b+c\right)}\)
\(=\sqrt{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}=\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\)
Vậy A là số hữu tỉ
Gọi a_n là số thứ n trong dãy số đã cho. Ta sẽ chứng minh rằng không có 6 số liên tiếp trong dãy số đã cho có giá trị là 0, tức là a_i ≠ 0 với mọi i sao cho 1 ≤ i ≤ 6.
Nếu a_k ≠ 0, a_(k+1) ≠ 0 do a_(k+1) = chữ số tận cùng của tổng 6 số đứng ngay trước nó, và các số này đều khác 0.
Nếu a_k = 0, ta xét 5 số đứng trước nó: a_(k-4), a_(k-3), a_(k-2), a_(k-1), a_k. Vì a_k = 0, nên tổng của 6 số này chính là tổng của 5 số đầu tiên, và theo giả thiết quy nạp, không có 5 số liên tiếp trong dãy số đã cho có giá trị là 0. Do đó, a_(k+1) ≠ 0.
Vậy, theo nguyên tắc quy nạp, ta có dãy số đã cho không chứa 6 số liên tiếp bằng 0.
Giả sử trong bộ 3 thu được sau k bước biến đổi, có a = 0. Khi đó, ta chỉ cần chứng minh rằng trong 2 số còn lại, có ít nhất 1 số bằng 0.
Nếu b = 0 hoặc c = 0, ta đã tìm được số bằng 0.
Nếu b và c đều khác 0, ta có:
∣b−c∣, ∣c−a∣, ∣a−b∣ ≥ 1
Do đó, trong 3 số ∣b−c∣, ∣c−a∣, ∣a−b∣, không có số nào bằng 0. Khi đó, ta có:
∣∣b−(b−c)∣−∣c−a∣∣=∣a−b∣
Vậy, ta có thể thay bằng b - (b - c) để giảm số lượng biến đổi. Sau đó, ta lại áp dụng phương pháp quy nạp để chứng minh rằng trong bộ 3 thu được sau k+1 bước biến đổi, có
10:06